1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
//! Math types and helpers.
//!
//! Consists of re-exported `glam` types with some additions.

pub use glam::*;

#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct Rect {
    pub x: f32,
    pub y: f32,
    pub w: f32,
    pub h: f32,
}

impl Rect {
    pub fn new(x: f32, y: f32, w: f32, h: f32) -> Rect {
        Rect { x, y, w, h }
    }

    pub fn point(&self) -> Vec2 {
        vec2(self.x, self.y)
    }

    pub fn size(&self) -> Vec2 {
        vec2(self.w, self.h)
    }

    /// Returns the left edge of the `Rect`
    pub fn left(&self) -> f32 {
        self.x
    }

    /// Returns the right edge of the `Rect`
    pub fn right(&self) -> f32 {
        self.x + self.w
    }

    /// Returns the top edge of the `Rect`
    pub fn top(&self) -> f32 {
        self.y
    }

    /// Returns the bottom edge of the `Rect`
    pub fn bottom(&self) -> f32 {
        self.y + self.h
    }

    /// Moves the `Rect`'s origin to (x, y)
    pub fn move_to(&mut self, destination: Vec2) {
        self.x = destination.x;
        self.y = destination.y;
    }

    /// Scales the `Rect` by a factor of (sx, sy),
    /// growing towards the bottom-left
    pub fn scale(&mut self, sx: f32, sy: f32) {
        self.w *= sx;
        self.h *= sy;
    }

    /// Checks whether the `Rect` contains a `Point`
    pub fn contains(&self, point: Vec2) -> bool {
        point.x >= self.left()
            && point.x < self.right()
            && point.y < self.bottom()
            && point.y >= self.top()
    }

    /// Checks whether the `Rect` overlaps another `Rect`
    pub fn overlaps(&self, other: &Rect) -> bool {
        self.left() <= other.right()
            && self.right() >= other.left()
            && self.top() <= other.bottom()
            && self.bottom() >= other.top()
    }

    /// Returns a new `Rect` that includes all points of these two `Rect`s.
    pub fn combine_with(self, other: Rect) -> Rect {
        let x = f32::min(self.x, other.x);
        let y = f32::min(self.y, other.y);
        let w = f32::max(self.right(), other.right()) - x;
        let h = f32::max(self.bottom(), other.bottom()) - y;
        Rect { x, y, w, h }
    }

    /// Returns an intersection rect there is any intersection
    pub fn intersect(&self, other: Rect) -> Option<Rect> {
        let left = self.x.max(other.x);
        let top = self.y.max(other.y);
        let right = self.right().min(other.right());
        let bottom = self.bottom().min(other.bottom());

        if right < left || bottom < top {
            return None;
        }

        Some(Rect {
            x: left,
            y: top,
            w: right - left,
            h: bottom - top,
        })
    }

    /// Translate rect origin be `offset` vector
    pub fn offset(self, offset: Vec2) -> Rect {
        Rect::new(self.x + offset.x, self.y + offset.y, self.w, self.h)
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct RectOffset {
    pub left: f32,
    pub right: f32,
    pub bottom: f32,
    pub top: f32,
}

impl RectOffset {
    pub fn new(left: f32, right: f32, top: f32, bottom: f32) -> RectOffset {
        RectOffset {
            left,
            right,
            top,
            bottom,
        }
    }
}

/// Converts 2d polar coordinates to 2d cartesian coordinates.
pub fn polar_to_cartesian(rho: f32, theta: f32) -> Vec2 {
    vec2(rho * theta.cos(), rho * theta.sin())
}

/// Converts 2d cartesian coordinates to 2d polar coordinates.
pub fn cartesian_to_polar(cartesian: Vec2) -> Vec2 {
    vec2(
        (cartesian.x.powi(2) + cartesian.y.powi(2)).sqrt(),
        cartesian.y.atan2(cartesian.x),
    )
}

/// Returns value, bounded in range [min, max].
pub fn clamp<T: PartialOrd>(value: T, min: T, max: T) -> T {
    if value < min {
        min
    } else if value > max {
        max
    } else {
        value
    }
}