1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
//! Derive macro for Galois Field
//!
//! # Quick Start
//!
//! ```
//! use macro_galois_field::Field;
//!
//! #[derive(Field, Debug, Default, Copy, Clone)]
//! #[prime = 2]
//! struct Fp2(u64);
//!
//! let a = Fp2(3);
//! let b = Fp2(3);
//! assert_eq!(a + b, Fp2(0), "{} + {}", a.0, b.0);
//! assert_eq!(a - b, Fp2(0), "{} - {}", a.0, b.0);
//! assert_eq!(a - b, Fp2(2), "{} - {}", a.0, b.0);
//! assert_eq!(a * b, Fp2(1), "{} * {}", a.0, b.0);
//! assert_eq!(a * b, Fp2(3), "{} * {}", a.0, b.0);
//! assert_eq!(a / b, Fp2(1), "{} / {}", a.0, b.0);
//!
//! let a = Fp2(3);
//! let b = Fp2(100);
//! assert_eq!(a + b, Fp2(1), "{} + {}", a.0, b.0);
//! assert_eq!(a - b, Fp2(1), "{} - {}", a.0, b.0);
//! ```

#![recursion_limit="1024"]
use proc_macro::TokenStream;
use quote::{quote, ToTokens};
use syn::{
    parse_macro_input, DeriveInput,
};

// TODO: not only prime field, non-prime field
// TODO: not only struct(u64), but also struct(usize), struct {num: u32}
// TODO: check if prime is really a prime number
#[proc_macro_derive(Field, attributes(prime))]
pub fn derive(input: TokenStream) -> TokenStream {
    // Parse the input tokens into a syntax tree.
    let ast = parse_macro_input!(input as DeriveInput);
    let name = &ast.ident;
    let prime_attr = ast.attrs.iter().find(|atter| {
        atter.path.segments[0].ident.to_string() == "prime"
    }).expect("prime attr should exist.");
    let tt= prime_attr.tts.clone().into_iter().nth(0).expect(&format!("expect: #[prime = <num>].\nreal: {:?}", prime_attr.into_token_stream().to_string()));
    assert_eq!(tt.to_string(), "=");
    let prime_tt= prime_attr.tts.clone().into_iter().nth(1).expect(&format!("expect: #[prime = <num>].\nreal: {:?}", prime_attr.into_token_stream().to_string()));
    let prime: u64 = match prime_tt {
        proc_macro2::TokenTree::Literal(l) => {
            l.to_string().parse().unwrap()
        }
        _ => {
            panic!("{:?}", prime_tt)
        }
    };
    (quote!{
        impl #name {
            const prime: u64 = #prime;

            pub fn n(num: u64) -> Self {
                #name(num % #prime)
            }

            fn modinv(&self) -> Self {
                let mut x0: i64 = 1;
                let mut y0: i64 = 0;
                let mut x1: i64 = 0;
                let mut y1:i64 = 1;
                let mut a: i64 = self.0 as i64;
                let mut b: i64 = #prime as i64;
                while b != 0 {
                    let q = a / b;
                    let pre_b = b;
                    let pre_a = a;
                    a = pre_b;
                    b = pre_a % pre_b;

                    let pre_x0 = x0;
                    let pre_x1 = x1;
                    x0 = pre_x1;
                    x1 = pre_x0 - q * pre_x1;

                    let pre_y0 = y0;
                    let pre_y1 = y1;
                    y0 = pre_y1;
                    y1 = pre_y0 - q * pre_y1;
                }
                if a != 1 {
                    dbg!(a, b, x0, x1, y0, y1);
                    panic!("modular inverse does not exist for num: {}, moduler: {}", self.0, #prime);
                }
                if x0 < 0 {
                    let q = x0 / #prime as i64;
                    x0 -= (q - 1) * #prime as i64;
                }
                x0 = x0 % #prime as i64;
                #name(x0 as u64)
            }
        }

        impl std::ops::Add for #name {
            type Output = Self;
            fn add(self, rhs: Self) -> Self::Output {
                #name((self.0 + rhs.0) % #prime)
            }
        }

        impl std::ops::AddAssign for #name {
            fn add_assign(&mut self, rhs: Self) {
                self.0 = (self.0 + rhs.0) % #prime;
            }
        }

        impl std::ops::Sub for #name {
            type Output = Self;
            fn sub(self, rhs: Self) -> Self::Output {
                let mut n = self.0;
                while n < rhs.0 {
                    n += #prime
                }
                #name((n - rhs.0) % #prime)
            }
        }

        impl std::ops::SubAssign for #name {
            fn sub_assign(&mut self, rhs: Self) {
                while self.0 < rhs.0 {
                    self.0 += #prime
                }
                self.0 = (self.0 - rhs.0) % #prime;
            }
        }

        impl std::ops::Mul for #name {
            type Output = Self;
            fn mul(self, rhs: Self) -> Self::Output {
                #name((self.0 * rhs.0) % #prime)
            }
        }

        impl std::ops::MulAssign for #name {
            fn mul_assign(&mut self, rhs: Self) {
                self.0 = (self.0 * rhs.0) % #prime;
            }
        }

        impl std::ops::Div for #name {
            type Output = Self;
            fn div(self, rhs: Self) -> Self::Output {
                self * rhs.modinv()
            }
        }

        impl std::ops::DivAssign for #name {
            fn div_assign(&mut self, rhs: Self) {
                let a = #name(self.0) * rhs.modinv();
                self.0 = a.0;
            }
        }

        impl std::ops::Neg for #name {
            type Output = Self;
            fn neg(self) -> Self::Output {
                let mut num = -(self.0 as i64);
                if num < 0 {
                    let q = num / #prime as i64;
                    num -= (q - 1) * #prime as i64;
                }

                num = num % #prime as i64;
                #name(num as u64)
            }
        }

        impl PartialEq for #name {
            fn eq(&self, other: &Self) -> bool {
                self.0 % #prime == other.0 % #prime
            }
        }
        impl Eq for #name {}

    }).into()
}