1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
use scalar::{Scalar, One};
use generic_math::{Point, Vector, Rect};

use std::ops::Range;

/// Common APIs to segment types.
pub trait Segment: Copy + Sized {
    type Scalar: Scalar;

    /// Start of the curve.
    fn from(&self) -> Point<Self::Scalar>;

    /// End of the curve.
    fn to(&self) -> Point<Self::Scalar>;

    /// Sample the curve at t (expecting t between 0 and 1).
    fn sample(&self, t: Self::Scalar) -> Point<Self::Scalar>;

    /// Sample x at t (expecting t between 0 and 1).
    fn x(&self, t: Self::Scalar) -> Self::Scalar { self.sample(t).x }

    /// Sample y at t (expecting t between 0 and 1).
    fn y(&self, t: Self::Scalar) -> Self::Scalar { self.sample(t).y }

    /// Sample the derivative at t (expecting t between 0 and 1).
    fn derivative(&self, t: Self::Scalar) -> Vector<Self::Scalar>;

    /// Sample x derivative at t (expecting t between 0 and 1).
    fn dx(&self, t: Self::Scalar) -> Self::Scalar { self.derivative(t).x }

    /// Sample y derivative at t (expecting t between 0 and 1).
    fn dy(&self, t: Self::Scalar) -> Self::Scalar { self.derivative(t).y }

    /// Split this curve into two sub-curves.
    fn split(&self, t: Self::Scalar) -> (Self, Self);

    /// Return the curve before the split point.
    fn before_split(&self, t: Self::Scalar) -> Self;

    /// Return the curve after the split point.
    fn after_split(&self, t: Self::Scalar) -> Self;

    /// Return the curve inside a given range of t.
    ///
    /// This is equivalent splitting at the range's end points.
    fn split_range(&self, t_range: Range<Self::Scalar>) -> Self;

    /// Swap the direction of the segment.
    fn flip(&self) -> Self;

    /// Compute the length of the segment using a flattened approximation.
    fn approximate_length(&self, tolerance: Self::Scalar) -> Self::Scalar;
}

pub trait BoundingRect {
    type Scalar: Scalar;

    /// Returns a rectangle that contains the curve.
    fn bounding_rect(&self) -> Rect<Self::Scalar>;

    /// Returns a rectangle that contains the curve.
    ///
    /// This does not necessarily return the smallest possible bounding rectangle.
    fn fast_bounding_rect(&self) -> Rect<Self::Scalar> { self.bounding_rect() }

    /// Returns a range of x values that contains the curve.
    fn bounding_range_x(&self) -> (Self::Scalar, Self::Scalar);

    /// Returns a range of y values that contains the curve.
    fn bounding_range_y(&self) -> (Self::Scalar, Self::Scalar);

    /// Returns a range of x values that contains the curve.
    fn fast_bounding_range_x(&self) -> (Self::Scalar, Self::Scalar);

    /// Returns a range of y values that contains the curve.
    fn fast_bounding_range_y(&self) -> (Self::Scalar, Self::Scalar);
}

/// Types that implement call-back based iteration
pub trait FlattenedForEach: Segment {
    /// Iterates through the curve invoking a callback at each point.
    fn for_each_flattened<F: FnMut(Point<Self::Scalar>)>(&self, tolerance: Self::Scalar, call_back: &mut F);
}

/// Types that implement local flattening approximation at the start of the curve.
pub trait FlatteningStep: FlattenedForEach {
    /// Find the interval of the begining of the curve that can be approximated with a
    /// line segment.
    fn flattening_step(&self, tolerance: Self::Scalar) -> Self::Scalar;

    /// Returns the flattened representation of the curve as an iterator, starting *after* the
    /// current point.
    fn flattened(self, tolerance: Self::Scalar) -> Flattened<Self::Scalar, Self> {
        Flattened::new(self, tolerance)
    }
}

impl<T> FlattenedForEach for T
where T: FlatteningStep
{
    fn for_each_flattened<F: FnMut(Point<Self::Scalar>)>(&self, tolerance: Self::Scalar, call_back: &mut F) {
        let mut iter = *self;
        loop {
            let t = iter.flattening_step(tolerance);
            if t == Self::Scalar::one() {
                call_back(iter.to());
                break;
            }
            iter = iter.after_split(t);
            call_back(iter.from());
        }
    }
}

/// An iterator over a generic curve segment that yields line segments approximating the
/// curve for a given approximation threshold.
///
/// The iterator starts at the first point *after* the origin of the curve and ends at the
/// destination.
pub struct Flattened<S, T> {
    curve: T,
    tolerance: S,
    done: bool,
}

impl<S: Scalar, T: FlatteningStep> Flattened<S, T> {
    pub fn new(curve: T, tolerance: S) -> Self {
        assert!(tolerance > S::ZERO);
        Flattened {
            curve: curve,
            tolerance: tolerance,
            done: false,
        }
    }
}

impl<S: Scalar, T: FlatteningStep<Scalar=S>> Iterator for Flattened<S, T>
{
    type Item = Point<S>;
    fn next(&mut self) -> Option<Point<S>> {
        if self.done {
            return None;
        }
        let t = self.curve.flattening_step(self.tolerance);
        if t == S::ONE {
            self.done = true;
            return Some(self.curve.to());
        }
        self.curve = self.curve.after_split(t);
        return Some(self.curve.from());
    }
}

pub(crate) fn approximate_length_from_flattening<S: Scalar, T>(curve: &T, tolerance: S) -> S
where T: FlattenedForEach<Scalar=S>
{
    let mut start = curve.from();
    let mut len = S::ZERO;
    curve.for_each_flattened(tolerance, &mut|p| {
        len = len + (p - start).length();
        start = p;
    });
    return len;
}

macro_rules! impl_segment {
    ($S:ty) => (
        type Scalar = $S;
        fn from(&self) -> Point<$S> { self.from() }
        fn to(&self) -> Point<$S> { self.to() }
        fn sample(&self, t: $S) -> Point<$S> { self.sample(t) }
        fn x(&self, t: $S) -> $S { self.x(t) }
        fn y(&self, t: $S) -> $S { self.y(t) }
        fn derivative(&self, t: $S) -> Vector<$S> { self.derivative(t) }
        fn dx(&self, t: $S) -> $S { self.dx(t) }
        fn dy(&self, t: $S) -> $S { self.dy(t) }
        fn split(&self, t: $S) -> (Self, Self) { self.split(t) }
        fn before_split(&self, t: $S) -> Self { self.before_split(t) }
        fn after_split(&self, t: $S) -> Self { self.after_split(t) }
        fn split_range(&self, t_range: Range<$S>) -> Self { self.split_range(t_range) }
        fn flip(&self) -> Self { self.flip() }
        fn approximate_length(&self, tolerance: $S) -> $S {
            self.approximate_length(tolerance)
        }
    )
}