logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
//! Shader stages, programs and uniforms.
//!
//! This module contains everything related to _shaders_. Shader programs — shaders, for short —
//! are GPU binaries that run to perform a series of transformation. Typically run when a draw
//! command is issued, they are responsible for:
//!
//! - Transforming vertex data. This is done in a _vertex shader_. Vertex data, such as the
//!   positions, colors, UV coordinates, bi-tangents, etc. of each vertices will go through the
//!   vertex shader and get transformed based on the code provided inside the stage. For example,
//!   vertices can be projected on the screen with a perspective and view matrices.
//! - Tessellating primitive patches. This is done in _tessellation shaders_.
//! - Filtering, transforming again or even generating new vertices and primitives. This is done
//!   by the _geometry shader_.
//! - And finally, outputting a color for each _fragment_ covered by the objects you render. This
//!   is done by the _fragment shader_.
//!
//! # Shader stages
//!
//! Right now, five shader stages  — [`Stage`] — are supported, ordered by usage in the graphics
//! pipeline:
//!
//! 1. [`StageType::VertexShader`].
//! 2. [`StageType::TessellationControlShader`].
//! 3. [`StageType::TessellationEvaluationShader`].
//! 4. [`StageType::GeometryShader`].
//! 5. [`StageType::FragmentShader`].
//!
//! Those are not all mandatory: only the _vertex_ stage and _fragment_ stages are mandatory. If
//! you want tessellation shaders, you have to provide both of them.
//!
//! Shader stages — [`Stage`] — are compiled independently at runtime by your GPU driver, and then
//! _linked_ into a shader program. The creation of a [`Stage`] implies using an input string,
//! representing the _source code_ of the stage. This is an opaque [`String`] that must represent
//! a GLSL stage. The backend will transform the string into its own representation if needed.
//!
//! > For this version of the crate, the GLSL string must be at least 330-compliant. It is possible
//! > that this changes in the future to be more flexible, but right now GLSL 150, for instance, is
//! > not allowed.
//!
//! # Shader program
//!
//! A shader program — [`Program`] is akin to a binary program, but runs on GPU. It is invoked when
//! you issue draw commands. It will run each stages you’ve put in it to transform vertices and
//! rasterize fragments inside a framebuffer. Once this is done, the framebuffer will contain
//! altered fragments by the final stage (fragment shader). If the shader program outputs several
//! properties, we call that situation _MRT_ (Multiple Render Target) and the framebuffer must be
//! configured to be able to receive those outputs — basically, it means that its _color slots_
//! and/or _depth slots_ must adapt to the output of the shader program.
//!
//! Creating shader programs is done by gathering the [`Stage`] you want and _linking_ them. Some
//! helper methods allow to create a shader [`Program`] directly from the string source for each
//! stage, removing the need to build each stage individually.
//!
//! Shader programs are typed with three important piece of information:
//!
//! - The vertex [`Semantics`].
//! - The render target outputs.
//! - The [`UniformInterface`].
//!
//!
//! # Vertex semantics
//!
//! When a shader program runs, it first executes the mandatory _vertex stage on a set of
//! vertices. Those vertices have a given format — that is described by the [`Vertex`] trait.
//! Because running a shader on an incompatible vertex would yield wrong results, both the
//! vertices and the shader program must be tagged with a type which must implement the
//! [`Semantics`] trait. More on that on the documentation of [`Semantics`].
//!
//! # Render target outputs
//!
//! A shader program, in its final mandatory _fragment stage_, will write values into the currently
//! in-use framebuffer. The number of “channels” to write to represents the render targets.
//! Typically, simple renders will simply write the color of a pixel — so only one render target.
//! In that case, the type of the output of the shader program must match the color slot of the
//! framebuffer it is used with.
//!
//! However, it is possible to write more data. For instance,
//! [deferred shading](https://en.wikipedia.org/wiki/Deferred_shading) is a technique that requires
//! to write several data to a framebuffer, called G-buffer (for geometry buffer): space
//! coordinates, normals, tangents, bi-tangents, etc. In that case, your framebuffer must have
//! a type matching the outputs of the fragment shader, too.
//!
//! # Shader customization
//!
//! A shader [`Program`] represents some code, in a binary form, that transform data. If you
//! consider such code, it can adapt to the kind of data it receives, but the behavior is static.
//! That means that it shouldn’t be possible to ask the program to do something else — shader
//! programs don’t have a state as they must be spawned in parallel for your vertices, pixels, etc.
//! However, there is a way to dynamically change what happens inside a shader program. That way
//!
//! The concept is similar to environment variables: you can declare, in your shader stages,
//! _environment variables_ that will receive values from the host (i.e. on the Rust side). It is
//! not possible to change those values while a draw command is issued: you have to change them
//! in between draw commands. For this reason, those environment variables are often called
//! _constant buffers_, _uniform_, _uniform buffers_, etc. by several graphics libraries. In our
//! case, right now, we call them [`Uniform`].
//!
//! ## Uniforms
//!
//! A [`Uniform`] is parametric type that accepts the type of the value it will be able to change.
//! For instance, `Uniform<f32>` represents a `f32` that can be changed in a shader program. That
//! value can be set by the Rust program when the shader program is not currently in use — no
//! draw commands.
//!
//! A [`Uniform`] is a _single_ variable that allows the most basic form of customization. It’s
//! very similar to environment variables. You can declare several ones as you would declare
//! several environment variables. More on that on the documentation of [`Uniform`].
//!
//! ## Shader data
//!
//! Another way to pass data to shader is to use a [`ShaderData`]. This kind of object allows to
//! shared data between shaders: set the data once, it will be available to any shader you pass the
//! [`ShaderData`] to.
//!
//! Most implementation also allows much more data via this mechanism, allowing to pass huge amount
//! of data to implement various techniques, such as _geometry instancing_ for instance.
//!
//! ## Uniform interfaces
//!
//! As with vertex semantics and render targets, the uniforms that can be used with a shader program
//! are part of its type, too, and represented by a single type that must implement
//! [`UniformInterface`]. That type can contain anything, but it is advised to just put [`Uniform`]
//! fields in it. More on the [`UniformInterface`] documentation.
//!
//! [`Vertex`]: crate::vertex::Vertex
//! [`Pipeline`]: crate::pipeline::Pipeline
//! [`ShaderData`]: crate::shader::ShaderData

pub mod types;

use crate::{
  backend::shader::{Shader, ShaderData as ShaderDataBackend, Uniformable},
  context::GraphicsContext,
  vertex::Semantics,
};
use std::{error, fmt, marker::PhantomData};

/// A shader stage type.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum StageType {
  /// Vertex shader.
  VertexShader,
  /// Tessellation control shader.
  TessellationControlShader,
  /// Tessellation evaluation shader.
  TessellationEvaluationShader,
  /// Geometry shader.
  GeometryShader,
  /// Fragment shader.
  FragmentShader,
}

impl fmt::Display for StageType {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      StageType::VertexShader => f.write_str("vertex shader"),
      StageType::TessellationControlShader => f.write_str("tessellation control shader"),
      StageType::TessellationEvaluationShader => f.write_str("tessellation evaluation shader"),
      StageType::GeometryShader => f.write_str("geometry shader"),
      StageType::FragmentShader => f.write_str("fragment shader"),
    }
  }
}

/// Errors that shader stages can emit.
#[non_exhaustive]
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum StageError {
  /// Occurs when a shader fails to compile.
  CompilationFailed(StageType, String),
  /// Occurs when you try to create a shader which type is not supported on the current hardware.
  UnsupportedType(StageType),
}

impl StageError {
  /// Occurs when a shader fails to compile.
  pub fn compilation_failed(ty: StageType, reason: impl Into<String>) -> Self {
    StageError::CompilationFailed(ty, reason.into())
  }

  /// Occurs when you try to create a shader which type is not supported on the current hardware.
  pub fn unsupported_type(ty: StageType) -> Self {
    StageError::UnsupportedType(ty)
  }
}

impl fmt::Display for StageError {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      StageError::CompilationFailed(ref ty, ref r) => write!(f, "{} compilation error: {}", ty, r),

      StageError::UnsupportedType(ty) => write!(f, "unsupported {}", ty),
    }
  }
}

impl error::Error for StageError {}

impl From<StageError> for ProgramError {
  fn from(e: StageError) -> Self {
    ProgramError::StageError(e)
  }
}

/// Tessellation stages.
///
/// - The `control` stage represents the _tessellation control stage_, which is invoked first.
/// - The `evaluation` stage represents the _tessellation evaluation stage_, which is invoked after
///   the control stage has finished.
///
/// # Parametricity
///
/// - `S` is the representation of the stage. Depending on the interface you choose to create a
///   [`Program`], it might be a [`Stage`] or something akin to [`&str`] / [`String`].
///
/// [`&str`]: str
pub struct TessellationStages<'a, S>
where
  S: ?Sized,
{
  /// Tessellation control representation.
  pub control: &'a S,
  /// Tessellation evaluation representation.
  pub evaluation: &'a S,
}

/// Errors that a [`Program`] can generate.
#[non_exhaustive]
#[derive(Debug, Eq, PartialEq)]
pub enum ProgramError {
  /// Creating the program failed.
  CreationFailed(String),
  /// A shader stage failed to compile or validate its state.
  StageError(StageError),
  /// Program link failed. You can inspect the reason by looking at the contained [`String`].
  LinkFailed(String),
  /// A program warning.
  Warning(ProgramWarning),
}

impl ProgramError {
  /// Creating the program failed.
  pub fn creation_failed(reason: impl Into<String>) -> Self {
    ProgramError::CreationFailed(reason.into())
  }

  /// A shader stage failed to compile or validate its state.
  pub fn stage_error(e: StageError) -> Self {
    ProgramError::StageError(e)
  }

  /// Program link failed. You can inspect the reason by looking at the contained [`String`].
  pub fn link_failed(reason: impl Into<String>) -> Self {
    ProgramError::LinkFailed(reason.into())
  }

  /// A program warning.
  pub fn warning(w: ProgramWarning) -> Self {
    ProgramError::Warning(w)
  }
}

impl fmt::Display for ProgramError {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      ProgramError::CreationFailed(ref e) => write!(f, "cannot create shader program: {}", e),

      ProgramError::StageError(ref e) => write!(f, "shader program has stage error: {}", e),

      ProgramError::LinkFailed(ref s) => write!(f, "shader program failed to link: {}", s),

      ProgramError::Warning(ref e) => write!(f, "shader program warning: {}", e),
    }
  }
}

impl error::Error for ProgramError {
  fn source(&self) -> Option<&(dyn error::Error + 'static)> {
    match self {
      ProgramError::StageError(e) => Some(e),
      _ => None,
    }
  }
}

/// Program warnings, not necessarily considered blocking errors.
#[derive(Debug, Eq, PartialEq)]
pub enum ProgramWarning {
  /// Some uniform configuration is ill-formed. It can be a problem of inactive uniform, mismatch
  /// type, etc. Check the [`UniformWarning`] type for more information.
  Uniform(UniformWarning),
  /// Some vertex attribute is ill-formed.
  VertexAttrib(VertexAttribWarning),
}

impl fmt::Display for ProgramWarning {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      ProgramWarning::Uniform(ref e) => write!(f, "uniform warning: {}", e),
      ProgramWarning::VertexAttrib(ref e) => write!(f, "vertex attribute warning: {}", e),
    }
  }
}

impl error::Error for ProgramWarning {
  fn source(&self) -> Option<&(dyn error::Error + 'static)> {
    match self {
      ProgramWarning::Uniform(e) => Some(e),
      ProgramWarning::VertexAttrib(e) => Some(e),
    }
  }
}

impl From<ProgramWarning> for ProgramError {
  fn from(e: ProgramWarning) -> Self {
    ProgramError::Warning(e)
  }
}

/// Warnings related to uniform issues.
#[non_exhaustive]
#[derive(Debug, Eq, PartialEq)]
pub enum UniformWarning {
  /// Inactive uniform (not in use / no participation to the final output in shaders).
  Inactive(String),

  /// Type mismatch between the static requested type (i.e. the `T` in [`Uniform<T>`] for instance)
  /// and the type that got reflected from the backend in the shaders.
  ///
  /// The [`String`] is the name of the uniform; the second one gives the type mismatch.
  ///
  /// [`Uniform<T>`]: crate::shader::Uniform
  TypeMismatch(String, UniformType),

  /// The requested type is unsupported by the backend.
  ///
  /// The [`String`] is the name of the uniform. The [`UniformType`] is the type that is not
  /// supported by the backend.
  UnsupportedType(String, UniformType),

  /// Size mismatch between the static requested type (i.e. the `T` in [`Uniform<T>`] for instance)
  /// and the size that got reflected from the backend in the shaders.
  ///
  /// [`Uniform<T>`]: crate::shader::Uniform
  SizeMismatch {
    /// Name of the uniform.
    name: String,

    /// Size of the uniform (static).
    size: usize,

    /// Found size of the uniform (in the shader).
    found_size: usize,
  },
}

impl UniformWarning {
  /// Create an inactive uniform warning.
  pub fn inactive<N>(name: N) -> Self
  where
    N: Into<String>,
  {
    UniformWarning::Inactive(name.into())
  }

  /// Create a type mismatch.
  pub fn type_mismatch<N>(name: N, ty: UniformType) -> Self
  where
    N: Into<String>,
  {
    UniformWarning::TypeMismatch(name.into(), ty)
  }

  /// Create an unsupported type error.
  pub fn unsupported_type<N>(name: N, ty: UniformType) -> Self
  where
    N: Into<String>,
  {
    UniformWarning::UnsupportedType(name.into(), ty)
  }

  /// Create a size mismatch error.
  pub fn size_mismatch(name: impl Into<String>, size: usize, found_size: usize) -> Self {
    UniformWarning::SizeMismatch {
      name: name.into(),
      size,
      found_size,
    }
  }
}

impl fmt::Display for UniformWarning {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      UniformWarning::Inactive(ref s) => write!(f, "inactive {} uniform", s),

      UniformWarning::TypeMismatch(ref n, ref t) => {
        write!(f, "type mismatch for uniform {}: {}", n, t)
      }

      UniformWarning::UnsupportedType(ref name, ref ty) => {
        write!(f, "unsupported type {} for uniform {}", ty, name)
      }

      UniformWarning::SizeMismatch {
        ref name,
        size,
        found_size,
      } => {
        write!(
          f,
          "size mismatch for uniform {}: {} (tdetected size={}",
          name, size, found_size
        )
      }
    }
  }
}

impl From<UniformWarning> for ProgramWarning {
  fn from(e: UniformWarning) -> Self {
    ProgramWarning::Uniform(e)
  }
}

impl error::Error for UniformWarning {}

/// Warnings related to vertex attributes issues.
#[non_exhaustive]
#[derive(Debug, Eq, PartialEq)]
pub enum VertexAttribWarning {
  /// Inactive vertex attribute (not read).
  Inactive(String),
}

impl VertexAttribWarning {
  /// Inactive vertex attribute (not read).
  pub fn inactive(attrib: impl Into<String>) -> Self {
    VertexAttribWarning::Inactive(attrib.into())
  }
}

impl fmt::Display for VertexAttribWarning {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      VertexAttribWarning::Inactive(ref s) => write!(f, "inactive {} vertex attribute", s),
    }
  }
}

impl From<VertexAttribWarning> for ProgramWarning {
  fn from(e: VertexAttribWarning) -> Self {
    ProgramWarning::VertexAttrib(e)
  }
}

impl error::Error for VertexAttribWarning {}

/// A GPU shader program environment variable.
///
/// A uniform is a special variable that can be used to send data to a GPU. Several
/// forms exist, but the idea is that `T` represents the data you want to send. Some exceptions
/// exist that allow to pass shared data — such as [`ShaderDataBinding`] to pass a
/// [`ShaderData`], or [`TextureBinding`] to pass a [`Texture`] in order to fetch from it in a
/// shader stage.
///
/// You will never be able to store them by your own. Instead, you must use a [`UniformInterface`],
/// which provides a _contravariant_ interface for you. Creation is `unsafe` and should be
/// avoided. The [`UniformInterface`] is the only safe way to create those.
///
/// # Parametricity
///
/// - `T` is the type of data you want to be able to set in a shader program.
///
/// [`Texture`]: crate::texture::Texture
/// [`TextureBinding`]: crate::pipeline::TextureBinding
/// [`ShaderDataBinding`]: crate::pipeline::ShaderDataBinding
#[derive(Debug)]
pub struct Uniform<T>
where
  T: ?Sized,
{
  index: i32,
  _t: PhantomData<*const T>,
}

impl<T> Uniform<T>
where
  T: ?Sized,
{
  /// Create a new [`Uniform`].
  ///
  /// # Safety
  ///
  /// This method must be used **only** by backends. If you end up using it,
  /// then you’re doing something wrong. Read on [`UniformInterface`] for further
  /// information.
  pub unsafe fn new(index: i32) -> Self {
    Uniform {
      index,
      _t: PhantomData,
    }
  }

  /// Retrieve the internal index.
  ///
  /// Even though that function is safe, you have no reason to use it. Read on
  /// [`UniformInterface`] for further details.
  pub fn index(&self) -> i32 {
    self.index
  }
}

/// Type of a uniform.
///
/// This is an exhaustive list of possible types of value you can send to a shader program.
/// A [`UniformType`] is associated to any type that can be considered sent via the
/// [`Uniformable`] trait.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum UniformType {
  // scalars
  /// 32-bit signed integer.
  Int,
  /// 32-bit unsigned integer.
  UInt,
  /// 32-bit floating-point number.
  Float,
  /// 64-bit floating-point number.
  Double,
  /// Boolean.
  Bool,

  // vectors
  /// 2D signed integral vector.
  IVec2,
  /// 3D signed integral vector.
  IVec3,
  /// 4D signed integral vector.
  IVec4,
  /// 2D unsigned integral vector.
  UIVec2,
  /// 3D unsigned integral vector.
  UIVec3,
  /// 4D unsigned integral vector.
  UIVec4,
  /// 2D floating-point vector.
  Vec2,
  /// 3D floating-point vector.
  Vec3,
  /// 4D floating-point vector.
  Vec4,
  /// 2D floating-point (double) vector.
  DVec2,
  /// 3D floating-point (double) vector.
  DVec3,
  /// 4D floating-point (double) vector.
  DVec4,
  /// 2D boolean vector.
  BVec2,
  /// 3D boolean vector.
  BVec3,
  /// 4D boolean vector.
  BVec4,

  // matrices
  /// 2×2 floating-point matrix.
  M22,
  /// 3×3 floating-point matrix.
  M33,
  /// 4×4 floating-point matrix.
  M44,
  /// 2×2 floating-point (double) matrix.
  DM22,
  /// 3×3 floating-point (double) matrix.
  DM33,
  /// 4×4 floating-point (double) matrix.
  DM44,

  // textures
  /// Signed integral 1D texture sampler.
  ISampler1D,
  /// Signed integral 2D texture sampler.
  ISampler2D,
  /// Signed integral 3D texture sampler.
  ISampler3D,
  /// Signed integral 1D array texture sampler.
  ISampler1DArray,
  /// Signed integral 2D array texture sampler.
  ISampler2DArray,
  /// Unsigned integral 1D texture sampler.
  UISampler1D,
  /// Unsigned integral 2D texture sampler.
  UISampler2D,
  /// Unsigned integral 3D texture sampler.
  UISampler3D,
  /// Unsigned integral 1D array texture sampler.
  UISampler1DArray,
  /// Unsigned integral 2D array texture sampler.
  UISampler2DArray,
  /// Floating-point 1D texture sampler.
  Sampler1D,
  /// Floating-point 2D texture sampler.
  Sampler2D,
  /// Floating-point 3D texture sampler.
  Sampler3D,
  /// Floating-point 1D array texture sampler.
  Sampler1DArray,
  /// Floating-point 2D array texture sampler.
  Sampler2DArray,
  /// Signed cubemap sampler.
  ICubemap,
  /// Unsigned cubemap sampler.
  UICubemap,
  /// Floating-point cubemap sampler.
  Cubemap,

  /// Shader data binding.
  ShaderDataBinding,
}

impl fmt::Display for UniformType {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      UniformType::Int => f.write_str("int"),
      UniformType::UInt => f.write_str("uint"),
      UniformType::Float => f.write_str("float"),
      UniformType::Double => f.write_str("double"),
      UniformType::Bool => f.write_str("bool"),
      UniformType::IVec2 => f.write_str("ivec2"),
      UniformType::IVec3 => f.write_str("ivec3"),
      UniformType::IVec4 => f.write_str("ivec4"),
      UniformType::UIVec2 => f.write_str("uvec2"),
      UniformType::UIVec3 => f.write_str("uvec3"),
      UniformType::UIVec4 => f.write_str("uvec4"),
      UniformType::Vec2 => f.write_str("vec2"),
      UniformType::Vec3 => f.write_str("vec3"),
      UniformType::Vec4 => f.write_str("vec4"),
      UniformType::DVec2 => f.write_str("dvec2"),
      UniformType::DVec3 => f.write_str("dvec3"),
      UniformType::DVec4 => f.write_str("dvec4"),
      UniformType::BVec2 => f.write_str("bvec2"),
      UniformType::BVec3 => f.write_str("bvec3"),
      UniformType::BVec4 => f.write_str("bvec4"),
      UniformType::M22 => f.write_str("mat2"),
      UniformType::M33 => f.write_str("mat3"),
      UniformType::M44 => f.write_str("mat4"),
      UniformType::DM22 => f.write_str("dmat2"),
      UniformType::DM33 => f.write_str("dmat3"),
      UniformType::DM44 => f.write_str("dmat4"),
      UniformType::ISampler1D => f.write_str("isampler1D"),
      UniformType::ISampler2D => f.write_str("isampler2D"),
      UniformType::ISampler3D => f.write_str("isampler3D"),
      UniformType::ISampler1DArray => f.write_str("isampler1DArray"),
      UniformType::ISampler2DArray => f.write_str("isampler2DArray"),
      UniformType::UISampler1D => f.write_str("usampler1D"),
      UniformType::UISampler2D => f.write_str("usampler2D"),
      UniformType::UISampler3D => f.write_str("usampler3D"),
      UniformType::UISampler1DArray => f.write_str("usampler1DArray"),
      UniformType::UISampler2DArray => f.write_str("usampler2DArray"),
      UniformType::Sampler1D => f.write_str("sampler1D"),
      UniformType::Sampler2D => f.write_str("sampler2D"),
      UniformType::Sampler3D => f.write_str("sampler3D"),
      UniformType::Sampler1DArray => f.write_str("sampler1DArray"),
      UniformType::Sampler2DArray => f.write_str("sampler2DArray"),
      UniformType::ICubemap => f.write_str("isamplerCube"),
      UniformType::UICubemap => f.write_str("usamplerCube"),
      UniformType::Cubemap => f.write_str("samplerCube"),
      UniformType::ShaderDataBinding => f.write_str("shader data binding"),
    }
  }
}

/// A shader stage.
///
/// # Parametricity
///
/// - `B` is the backend type.
///
/// [`&str`]: str
pub struct Stage<B>
where
  B: ?Sized + Shader,
{
  repr: B::StageRepr,
}

impl<B> Stage<B>
where
  B: ?Sized + Shader,
{
  /// Create a new stage of type `ty` by compiling `src`.
  ///
  /// # Parametricity
  ///
  /// - `C` is the graphics context. `C::Backend` must implement the [`Shader`] trait.
  /// - `R` is the source code to use in the stage. It must implement [`AsRef<str>`].
  ///
  /// # Notes
  ///
  /// Feel free to consider using [`GraphicsContext::new_shader_stage`] for a simpler form of
  /// this method.
  ///
  /// [`AsRef<str>`]: AsRef
  pub fn new<C, R>(ctx: &mut C, ty: StageType, src: R) -> Result<Self, StageError>
  where
    C: GraphicsContext<Backend = B>,
    R: AsRef<str>,
  {
    unsafe {
      ctx
        .backend()
        .new_stage(ty, src.as_ref())
        .map(|repr| Stage { repr })
    }
  }
}

/// A builder of [`Uniform`].
///
/// A [`UniformBuilder`] is an important type as it’s the only one that allows to safely create
/// [`Uniform`] values.
///
/// # Parametricity
///
/// - `B` is the backend type. It must implement the [`Shader`] trait.
pub struct UniformBuilder<'a, B>
where
  B: ?Sized + Shader,
{
  repr: B::UniformBuilderRepr,
  warnings: Vec<UniformWarning>,
  _a: PhantomData<&'a mut ()>,
}

impl<'a, B> UniformBuilder<'a, B>
where
  B: ?Sized + Shader,
{
  /// Ask the creation of a [`Uniform`], identified by its `name`.
  pub fn ask<T>(&mut self, name: &str) -> Result<Uniform<T>, UniformWarning>
  where
    B: for<'u> Uniformable<'u, T>,
  {
    unsafe { B::ask_uniform(&mut self.repr, name) }
  }

  /// Ask the creation of a [`Uniform`], identified by its `name`.
  ///
  /// If the name is not found, an _unbound_ [`Uniform`] is returned (i.e. a [`Uniform`]) that does
  /// nothing.
  pub fn ask_or_unbound<T>(&mut self, name: &str) -> Uniform<T>
  where
    B: for<'u> Uniformable<'u, T>,
  {
    match self.ask(name) {
      Ok(uniform) => uniform,
      Err(err) => {
        self.warnings.push(err);
        unsafe { B::unbound(&mut self.repr) }
      }
    }
  }
}

/// [`Uniform`] interface.
///
/// When a type implements [`UniformInterface`], it means that it can be used as part of a shader
/// [`Program`] type. When a [`Program`] is in use in a graphics pipeline, its [`UniformInterface`]
/// is automatically provided to the user, giving them access to all the fields declared in. Then,
/// they can pass data to shaders before issuing draw commands.
///
/// # Parametricity
///
/// - `B` is the backend type. It must implement [`Shader`].
/// - `E` is the environment type. Set by default to `()`, it allows to pass a mutable
///   object at construction-site of the [`UniformInterface`]. It can be useful to generate
///   events or customize the way the [`Uniform`] are built by doing some lookups in hashmaps, etc.
///
/// # Notes
///
/// Implementing this trait — especially [`UniformInterface::uniform_interface`] can be a bit
/// overwhelming. It is highly recommended to use [luminance-derive]’s `UniformInterface`
/// proc-macro, which will do that for you by scanning your type declaration.
///
/// [luminance-derive]: https://crates.io/crates/luminance-derive
pub trait UniformInterface<B, E = ()>: Sized
where
  B: Shader,
{
  /// Create a [`UniformInterface`] by constructing [`Uniform`]s with a [`UniformBuilder`] and an
  /// optional environment object.
  ///
  /// This method is the only place where `Self` should be created. In theory, you could create it
  /// the way you want (since the type is provided by you) but not all types make sense. You will
  /// likely want to have some [`Uniform`] objects in your type, and the [`UniformBuilder`] that is
  /// provided as argument is the only way to create them.
  fn uniform_interface<'a>(
    builder: &mut UniformBuilder<'a, B>,
    env: &mut E,
  ) -> Result<Self, UniformWarning>;
}

impl<B, E> UniformInterface<B, E> for ()
where
  B: Shader,
{
  fn uniform_interface<'a>(
    _: &mut UniformBuilder<'a, B>,
    _: &mut E,
  ) -> Result<Self, UniformWarning> {
    Ok(())
  }
}

/// A built program with potential warnings.
///
/// The sole purpose of this type is to be destructured when a program is built.
///
/// # Parametricity
///
/// - `B` is the backend type.
/// - `Sem` is the [`Semantics`] type.
/// - `Out` is the render target type.
/// - `Uni` is the [`UniformInterface`] type.
pub struct BuiltProgram<B, Sem, Out, Uni>
where
  B: Shader,
{
  /// Built program.
  pub program: Program<B, Sem, Out, Uni>,
  /// Potential warnings.
  pub warnings: Vec<ProgramError>,
}

impl<B, Sem, Out, Uni> BuiltProgram<B, Sem, Out, Uni>
where
  B: Shader,
{
  /// Get the program and ignore the warnings.
  pub fn ignore_warnings(self) -> Program<B, Sem, Out, Uni> {
    self.program
  }
}

/// A [`Program`] uniform adaptation that has failed.
///
/// # Parametricity
///
/// - `B` is the backend type.
/// - `Sem` is the [`Semantics`] type.
/// - `Out` is the render target type.
/// - `Uni` is the [`UniformInterface`] type.
pub struct AdaptationFailure<B, Sem, Out, Uni>
where
  B: Shader,
{
  /// Program used before trying to adapt.
  pub program: Program<B, Sem, Out, Uni>,
  /// Program error that prevented to adapt.
  pub error: ProgramError,
}

impl<B, Sem, Out, Uni> AdaptationFailure<B, Sem, Out, Uni>
where
  B: Shader,
{
  pub(crate) fn new(program: Program<B, Sem, Out, Uni>, error: ProgramError) -> Self {
    AdaptationFailure { program, error }
  }

  /// Get the program and ignore the error.
  pub fn ignore_error(self) -> Program<B, Sem, Out, Uni> {
    self.program
  }
}

/// Interact with the [`UniformInterface`] carried by a [`Program`] and/or perform dynamic
/// uniform lookup.
///
/// This type allows to set — [`ProgramInterface::set`] – uniforms for a [`Program`].
///
/// In the case where you don’t have a uniform interface or need to dynamically lookup uniforms,
/// you can use the [`ProgramInterface::query`] method.
///
/// # Parametricity
///
/// `B` is the backend type.
pub struct ProgramInterface<'a, B>
where
  B: Shader,
{
  pub(crate) program: &'a mut B::ProgramRepr,
}

impl<'a, B> ProgramInterface<'a, B>
where
  B: Shader,
{
  /// Set a value on a [`Uniform`].
  ///
  /// The value that is passed depends on the associated [`Uniformable::Target`] type. Most of the time, it will be the
  /// same as `T`, but it might sometimes be something different if you are using existential types, such as with types
  /// with lifetimes.
  pub fn set<'u, T>(&'u mut self, uniform: &'u Uniform<T>, value: B::Target)
  where
    B: Uniformable<'u, T>,
  {
    unsafe { B::update(self.program, uniform, value) };
  }

  /// Get back a [`UniformBuilder`] to dynamically access [`Uniform`] objects.
  pub fn query(&mut self) -> Result<UniformBuilder<'a, B>, ProgramError> {
    unsafe {
      B::new_uniform_builder(&mut self.program).map(|repr| UniformBuilder {
        repr,
        warnings: Vec::new(),
        _a: PhantomData,
      })
    }
  }
}

/// A [`Program`] builder.
///
/// This type allows to create shader programs without having to worry too much about the highly
/// generic API.
pub struct ProgramBuilder<'a, C, Sem, Out, Uni> {
  ctx: &'a mut C,
  _phantom: PhantomData<(Sem, Out, Uni)>,
}

impl<'a, C, Sem, Out, Uni> ProgramBuilder<'a, C, Sem, Out, Uni>
where
  C: GraphicsContext,
  C::Backend: Shader,
  Sem: Semantics,
{
  /// Create a new [`ProgramBuilder`] from a [`GraphicsContext`].
  pub fn new(ctx: &'a mut C) -> Self {
    ProgramBuilder {
      ctx,
      _phantom: PhantomData,
    }
  }

  /// Create a [`Program`] by linking [`Stage`]s and accessing a mutable environment variable.
  ///
  /// # Parametricity
  ///
  /// - `T` is an [`Option`] containing a [`TessellationStages`] with [`Stage`] inside.
  /// - `G` is an [`Option`] containing a [`Stage`] inside (geometry shader).
  /// - `E` is the mutable environment variable.
  ///
  /// # Notes
  ///
  /// Feel free to look at the documentation of [`GraphicsContext::new_shader_program`] for
  /// a simpler interface.
  pub fn from_stages_env<'b, T, G, E>(
    &mut self,
    vertex: &'b Stage<C::Backend>,
    tess: T,
    geometry: G,
    fragment: &'b Stage<C::Backend>,
    env: &mut E,
  ) -> Result<BuiltProgram<C::Backend, Sem, Out, Uni>, ProgramError>
  where
    Uni: UniformInterface<C::Backend, E>,
    T: Into<Option<TessellationStages<'b, Stage<C::Backend>>>>,
    G: Into<Option<&'b Stage<C::Backend>>>,
  {
    let tess = tess.into();
    let geometry = geometry.into();

    unsafe {
      let mut repr = self.ctx.backend().new_program(
        &vertex.repr,
        tess.map(|stages| TessellationStages {
          control: &stages.control.repr,
          evaluation: &stages.evaluation.repr,
        }),
        geometry.map(|stage| &stage.repr),
        &fragment.repr,
      )?;

      let warnings = C::Backend::apply_semantics::<Sem>(&mut repr)?
        .into_iter()
        .map(|w| ProgramError::Warning(w.into()))
        .collect();

      let mut uniform_builder =
        C::Backend::new_uniform_builder(&mut repr).map(|repr| UniformBuilder {
          repr,
          warnings: Vec::new(),
          _a: PhantomData,
        })?;

      let uni =
        Uni::uniform_interface(&mut uniform_builder, env).map_err(ProgramWarning::Uniform)?;

      let program = Program {
        repr,
        uni,
        _sem: PhantomData,
        _out: PhantomData,
      };

      Ok(BuiltProgram { program, warnings })
    }
  }

  /// Create a [`Program`] by linking [`Stage`]s.
  ///
  /// # Parametricity
  ///
  /// - `T` is an [`Option`] containing a [`TessellationStages`] with [`Stage`] inside.
  /// - `G` is an [`Option`] containing a [`Stage`] inside (geometry shader).
  ///
  /// # Notes
  ///
  /// Feel free to look at the documentation of [`GraphicsContext::new_shader_program`] for
  /// a simpler interface.
  pub fn from_stages<'b, T, G>(
    &mut self,
    vertex: &'b Stage<C::Backend>,
    tess: T,
    geometry: G,
    fragment: &'b Stage<C::Backend>,
  ) -> Result<BuiltProgram<C::Backend, Sem, Out, Uni>, ProgramError>
  where
    Uni: UniformInterface<C::Backend>,
    T: Into<Option<TessellationStages<'b, Stage<C::Backend>>>>,
    G: Into<Option<&'b Stage<C::Backend>>>,
  {
    Self::from_stages_env(self, vertex, tess, geometry, fragment, &mut ())
  }

  /// Create a [`Program`] by linking [`&str`]s and accessing a mutable environment variable.
  ///
  /// # Parametricity
  ///
  /// - `C` is the graphics context.
  /// - `T` is an [`Option`] containing a [`TessellationStages`] with [`&str`] inside.
  /// - `G` is an [`Option`] containing a [`Stage`] inside (geometry shader).
  /// - `E` is the mutable environment variable.
  ///
  /// # Notes
  ///
  /// Feel free to look at the documentation of [`GraphicsContext::new_shader_program`] for
  /// a simpler interface.
  ///
  /// [`&str`]: str
  pub fn from_strings_env<'b, T, G, E>(
    &mut self,
    vertex: &'b str,
    tess: T,
    geometry: G,
    fragment: &'b str,
    env: &mut E,
  ) -> Result<BuiltProgram<C::Backend, Sem, Out, Uni>, ProgramError>
  where
    Uni: UniformInterface<C::Backend, E>,
    T: Into<Option<TessellationStages<'b, str>>>,
    G: Into<Option<&'b str>>,
  {
    let vs_stage = Stage::new(self.ctx, StageType::VertexShader, vertex)?;

    let tess_stages = match tess.into() {
      Some(TessellationStages {
        control,
        evaluation,
      }) => {
        let control_stage = Stage::new(self.ctx, StageType::TessellationControlShader, control)?;
        let evaluation_stage = Stage::new(
          self.ctx,
          StageType::TessellationEvaluationShader,
          evaluation,
        )?;
        Some((control_stage, evaluation_stage))
      }
      None => None,
    };
    let tess_stages =
      tess_stages
        .as_ref()
        .map(|(ref control, ref evaluation)| TessellationStages {
          control,
          evaluation,
        });

    let gs_stage = match geometry.into() {
      Some(geometry) => Some(Stage::new(self.ctx, StageType::GeometryShader, geometry)?),
      None => None,
    };

    let fs_stage = Stage::new(self.ctx, StageType::FragmentShader, fragment)?;

    Self::from_stages_env(
      self,
      &vs_stage,
      tess_stages,
      gs_stage.as_ref(),
      &fs_stage,
      env,
    )
  }

  /// Create a [`Program`] by linking [`&str`]s.
  ///
  /// # Parametricity
  ///
  /// - `C` is the graphics context.
  /// - `T` is an [`Option`] containing a [`TessellationStages`] with [`&str`] inside.
  /// - `G` is an [`Option`] containing a [`Stage`] inside (geometry shader).
  ///
  /// # Notes
  ///
  /// Feel free to look at the documentation of [`GraphicsContext::new_shader_program`] for
  /// a simpler interface.
  ///
  /// [`&str`]: str
  pub fn from_strings<'b, T, G>(
    &mut self,
    vertex: &'b str,
    tess: T,
    geometry: G,
    fragment: &'b str,
  ) -> Result<BuiltProgram<C::Backend, Sem, Out, Uni>, ProgramError>
  where
    Uni: UniformInterface<C::Backend>,
    T: Into<Option<TessellationStages<'b, str>>>,
    G: Into<Option<&'b str>>,
  {
    Self::from_strings_env(self, vertex, tess, geometry, fragment, &mut ())
  }
}

/// A shader program.
///
/// Shader programs are GPU binaries that execute when a draw command is issued.
///
/// # Parametricity
///
/// - `B` is the backend type.
/// - `Sem` is the [`Semantics`] type.
/// - `Out` is the render target type.
/// - `Uni` is the [`UniformInterface`] type.
pub struct Program<B, Sem, Out, Uni>
where
  B: Shader,
{
  pub(crate) repr: B::ProgramRepr,
  pub(crate) uni: Uni,
  _sem: PhantomData<*const Sem>,
  _out: PhantomData<*const Out>,
}

impl<B, Sem, Out, Uni> Program<B, Sem, Out, Uni>
where
  B: Shader,
  Sem: Semantics,
{
  /// Create a new [`UniformInterface`] but keep the [`Program`] around without rebuilding it.
  ///
  /// # Parametricity
  ///
  /// - `Q` is the new [`UniformInterface`].
  pub fn adapt<Q>(self) -> Result<BuiltProgram<B, Sem, Out, Q>, AdaptationFailure<B, Sem, Out, Uni>>
  where
    Q: UniformInterface<B>,
  {
    self.adapt_env(&mut ())
  }

  /// Create a new [`UniformInterface`] but keep the [`Program`] around without rebuilding it, by
  /// using a mutable environment variable.
  ///
  /// # Parametricity
  ///
  /// - `Q` is the new [`UniformInterface`].
  /// - `E` is the mutable environment variable.
  pub fn adapt_env<Q, E>(
    mut self,
    env: &mut E,
  ) -> Result<BuiltProgram<B, Sem, Out, Q>, AdaptationFailure<B, Sem, Out, Uni>>
  where
    Q: UniformInterface<B, E>,
  {
    // first, try to create the new uniform interface
    let mut uniform_builder: UniformBuilder<B> =
      match unsafe { B::new_uniform_builder(&mut self.repr) } {
        Ok(repr) => UniformBuilder {
          repr,
          warnings: Vec::new(),
          _a: PhantomData,
        },

        Err(e) => return Err(AdaptationFailure::new(self, e)),
      };

    let uni = match Q::uniform_interface(&mut uniform_builder, env) {
      Ok(uni) => uni,
      Err(e) => {
        return Err(AdaptationFailure::new(
          self,
          ProgramWarning::Uniform(e).into(),
        ))
      }
    };

    let warnings = uniform_builder
      .warnings
      .into_iter()
      .map(|w| ProgramError::Warning(w.into()))
      .collect();

    let program = Program {
      repr: self.repr,
      uni,
      _sem: PhantomData,
      _out: PhantomData,
    };

    Ok(BuiltProgram { program, warnings })
  }

  /// Re-create the [`UniformInterface`] but keep the [`Program`] around without rebuilding it.
  ///
  /// # Parametricity
  ///
  /// - `E` is the mutable environment variable.
  pub fn readapt_env<E>(
    self,
    env: &mut E,
  ) -> Result<BuiltProgram<B, Sem, Out, Uni>, AdaptationFailure<B, Sem, Out, Uni>>
  where
    Uni: UniformInterface<B, E>,
  {
    self.adapt_env(env)
  }
}

/// Shader data.
///
/// # Parametricity
///
/// - `B` is the backend type.
/// - `T` is the type of the carried items.
pub struct ShaderData<B, T>
where
  B: ?Sized + ShaderDataBackend<T>,
{
  pub(crate) repr: B::ShaderDataRepr,
}

impl<B, T> ShaderData<B, T>
where
  B: ?Sized + ShaderDataBackend<T>,
{
  /// Create a [`ShaderData`] via an iterator of values.
  pub fn new(
    ctx: &mut impl GraphicsContext<Backend = B>,
    values: impl IntoIterator<Item = T>,
  ) -> Result<Self, ShaderDataError> {
    let repr = unsafe { ctx.backend().new_shader_data(values.into_iter())? };
    Ok(Self { repr })
  }

  /// Get the value at index `i`.
  pub fn at(&self, i: usize) -> Result<T, ShaderDataError> {
    unsafe { B::get_shader_data_at(&self.repr, i) }
  }

  /// Set the item at index `i` with the value `x`.
  ///
  /// Return the previous value.
  pub fn set(&mut self, i: usize, x: T) -> Result<T, ShaderDataError> {
    unsafe { B::set_shader_data_at(&mut self.repr, i, x) }
  }

  /// Replace all the values with the one provided by the iterator.
  pub fn replace(&mut self, values: impl IntoIterator<Item = T>) -> Result<(), ShaderDataError> {
    unsafe { B::set_shader_data_values(&mut self.repr, values.into_iter()) }
  }
}

/// Possible errors that can occur with shader data.
#[non_exhaustive]
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ShaderDataError {
  /// Cannot create the shader data on the backend side.
  CannotCreate,

  /// Index out of bounds.,
  OutOfBounds {
    /// Tried (incorrect) index.
    index: usize,
  },

  /// Cannot set data.
  CannotSetData {
    /// Tried (incorrect) index.
    index: usize,
  },

  /// Cannot replace data.
  CannotReplaceData,
}

impl fmt::Display for ShaderDataError {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
    match self {
      ShaderDataError::CannotCreate => f.write_str("cannot create shader data"),

      ShaderDataError::OutOfBounds { index } => {
        write!(f, "cannot get shader data item; out of bounds {}", index)
      }

      ShaderDataError::CannotSetData { index } => {
        write!(f, "cannot get shader data item; out of bounds {}", index)
      }

      ShaderDataError::CannotReplaceData => f.write_str("cannot replace shader data"),
    }
  }
}

impl std::error::Error for ShaderDataError {}