1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
//! Shader programs related types and functions.
//!
//! A shader `Program` is an object representing several operations. It’s a streaming program that
//! will operate on vertices, vertex patches, primitives and/or fragments.
//!
//! > *Note: shader programs don’t have to run on all those objects; they can be ran only on
//! vertices and fragments, for instance*.
//!
//! Creating a shader program is very simple. You need shader `Stage`s representing each step of the
//! processing.
//!
//! You *have* to provide at least a vertex and a fragment stages. If you want tessellation
//! processing, you need to provide a tessellation control and tessellation evaluation stages. If
//! you want primitives processing, you need to add a geometry stage.
//!
//! In order to customize the behavior of your shader programs, you have access to *uniforms*. For
//! more details about them, see the documentation for the type `Uniform` and trait `Uniformable`.
//! When creating a new shader program, you have to provide code to declare its *uniform semantics*.
//!
//! The *uniform semantics* represent a mapping between the variables declared in your shader
//! sources and variables you have access in your host code in Rust. Typically, you declare your
//! variable – `Uniform` – in Rust as `const` and use the function `Uniform::sem` to get the
//! semantic associated with the string you pass in.
//!
//! > **Becareful: currently, uniforms are a bit messy as you have to provide a per-program unique
//! number when you use the `Uniform::new` method. Efforts will be done in that direction in later
//! releases.
//!
//! You can create a `Program` with its `new` associated function.

use gl;
use gl::types::*;
use std::error::Error;
use std::ffi::CString;
use std::fmt;
use std::marker::PhantomData;
use std::ops::Deref;
use std::ptr::null_mut;

use linear::{M22, M33, M44};
use shader::stage::{self, Stage, StageError};
use vertex::Vertex;

pub type Result<A> = ::std::result::Result<A, ProgramError>;

/// A raw shader program.
///
/// This is a type-erased version of a `Program`.
#[derive(Debug)]
pub struct RawProgram {
  handle: GLuint
}

impl RawProgram {
  /// Create a new program by linking shader stages.
  fn new<'a, T, G>(tess: T,
                       vertex: &Stage,
                       geometry: G,
                       fragment: &Stage)
                       -> Result<Self>
      where T: Into<Option<(&'a Stage, &'a Stage)>>,
            G: Into<Option<&'a Stage>> {
    unsafe {
      let handle = gl::CreateProgram();

      if let Some((tcs, tes)) = tess.into() {
        gl::AttachShader(handle, tcs.handle());
        gl::AttachShader(handle, tes.handle());
      }

      gl::AttachShader(handle, vertex.handle());

      if let Some(geometry) = geometry.into() {
        gl::AttachShader(handle, geometry.handle());
      }

      gl::AttachShader(handle, fragment.handle());

      gl::LinkProgram(handle);

      let mut linked: GLint = gl::FALSE as GLint;
      gl::GetProgramiv(handle, gl::LINK_STATUS, &mut linked);

      if linked == (gl::TRUE as GLint) {
        Ok(RawProgram { handle: handle })
      } else {
        let mut log_len: GLint = 0;
        gl::GetProgramiv(handle, gl::INFO_LOG_LENGTH, &mut log_len);

        let mut log: Vec<u8> = Vec::with_capacity(log_len as usize);
        gl::GetProgramInfoLog(handle, log_len, null_mut(), log.as_mut_ptr() as *mut GLchar);

        gl::DeleteProgram(handle);

        log.set_len(log_len as usize);

        Err(ProgramError::LinkFailed(String::from_utf8(log).unwrap()))
      }
    }
  }

  #[inline]
  pub(crate) fn handle(&self) -> GLuint {
    self.handle
  }
}

impl Drop for RawProgram {
  fn drop(&mut self) {
    unsafe { gl::DeleteProgram(self.handle) }
  }
}

/// A typed shader program.
///
/// Typed shader programs represent their inputs, outputs and environment (uniforms) directly in
/// their types. This is very interesting as it adds more static safety and enables such programs
/// to *“store”* information like the uniform interface and such.
pub struct Program<In, Out, Uni> {
  raw: RawProgram,
  uni_iface: Uni,
  _in: PhantomData<*const In>,
  _out: PhantomData<*const Out>
}

impl<In, Out, Uni> Program<In, Out, Uni> where In: Vertex, Uni: UniformInterface {
  /// Create a new program by consuming `Stage`s.
  pub fn from_stages<'a, T, G>(tess: T,
                               vertex: &Stage,
                               geometry: G,
                               fragment: &Stage)
                               -> Result<(Self, Vec<UniformWarning>)>
                               where T: Into<Option<(&'a Stage, &'a Stage)>>,
                                     G: Into<Option<&'a Stage>> {
    let raw = RawProgram::new(tess, vertex, geometry, fragment)?;
    let (iface, warnings) = Uni::uniform_interface(UniformBuilder::new(&raw))?;

    let program = Program {
      raw: raw,
      uni_iface: iface,
      _in: PhantomData,
      _out: PhantomData
    };

    Ok((program, warnings))
  }

  /// Create a new program by consuming strings.
  pub fn from_strings<'a, T, G>(tess: T,
                                vertex: &str,
                                geometry: G,
                                fragment: &str)
                                -> Result<(Self, Vec<UniformWarning>)>
                                where T: Into<Option<(&'a str, &'a str)>>,
                                      G: Into<Option<&'a str>> {
    let tess = match tess.into() {
      Some((tcs_str, tes_str)) => {
        let tcs = Stage::new(stage::Type::TessellationControlShader, tcs_str).map_err(ProgramError::StageError)?;
        let tes = Stage::new(stage::Type::TessellationControlShader, tes_str).map_err(ProgramError::StageError)?;
        Some((tcs, tes))
      },
      None => None
    };

    let gs = match geometry.into() {
      Some(gs_str) => Some(Stage::new(stage::Type::GeometryShader, gs_str).map_err(ProgramError::StageError)?),
      None => None
    };

    let vs = Stage::new(stage::Type::VertexShader, vertex).map_err(ProgramError::StageError)?;
    let fs = Stage::new(stage::Type::FragmentShader, fragment).map_err(ProgramError::StageError)?;

    Self::from_stages(tess.as_ref().map(|&(ref tcs, ref tes)| (tcs, tes)), &vs, gs.as_ref(), &fs)
  }

  /// Get the uniform interface associated with this program.
  pub(crate) fn uniform_interface(&self) -> &Uni {
    &self.uni_iface
  }
}

impl<In, Out, Uni> Deref for Program<In, Out, Uni> {
  type Target = RawProgram;

  fn deref(&self) -> &Self::Target {
    &self.raw
  }
}

/// Class of types that can act as uniform interfaces in typed programs.
///
/// A uniform interface is a value that contains uniforms. The purpose of a uniform interface is to
/// be stored in a typed program and handed back to the programmer when the program is available in
/// a pipeline.
pub trait UniformInterface: Sized {
  /// Build the uniform interface.
  ///
  /// When mapping a uniform, if you want to accept failures, you can discard the error and use
  /// `UniformBuilder::unbound` to let the uniform pass through, and collect the uniform warning.
  fn uniform_interface<'a>(builder: UniformBuilder<'a>) -> Result<(Self, Vec<UniformWarning>)>;
}

impl UniformInterface for () {
  fn uniform_interface<'a>(_: UniformBuilder<'a>) -> Result<(Self, Vec<UniformWarning>)> {
    Ok(((), Vec::new()))
  }
}

/// Build uniforms to fold them to a uniform interface.
pub struct UniformBuilder<'a> {
  raw: &'a RawProgram
}

impl<'a> UniformBuilder<'a> {
  fn new(raw: &'a RawProgram) -> Self {
    UniformBuilder {
      raw: raw
    }
  }

  /// Have the builder hand you a `Uniform` of the type of your choice. Keep in mind that it’s
  /// possible that this function fails if you ask for a type that is not the one defined in the
  /// shader.
  pub fn ask<T>(&self, name: &str) -> ::std::result::Result<Uniform<T>, UniformWarning> where T: Uniformable {
    let uniform = match T::ty() {
      Type::BufferBinding => self.ask_uniform_block(name)?,
      _ => self.ask_uniform(name)?
    };

    uniform_type_match(self.raw.handle, name, T::ty(), T::dim()).map_err(|err| UniformWarning::TypeMismatch(name.to_owned(), err))?;

    Ok(uniform)
  }

  fn ask_uniform<T>(&self, name: &str) -> ::std::result::Result<Uniform<T>, UniformWarning> where T: Uniformable {
    let c_name = CString::new(name.as_bytes()).unwrap();
    let location = unsafe { gl::GetUniformLocation(self.raw.handle, c_name.as_ptr() as *const GLchar) };

    if location < 0 {
      Err(UniformWarning::Inactive(name.to_owned()))
    } else {
      Ok(Uniform::new(self.raw.handle, location))
    }
  }

  fn ask_uniform_block<T>(&self, name: &str) -> ::std::result::Result<Uniform<T>, UniformWarning> where T: Uniformable {
    let c_name = CString::new(name.as_bytes()).unwrap();
    let location = unsafe { gl::GetUniformBlockIndex(self.raw.handle, c_name.as_ptr() as *const GLchar) };

    if location == gl::INVALID_INDEX {
      Err(UniformWarning::Inactive(name.to_owned()))
    } else {
      Ok(Uniform::new(self.raw.handle, location as GLint))
    }
  }

  /// Special uniform that won’t do anything.
  ///
  /// Use that function when you need a uniform to complete a uniform interface but you’re sure you
  /// won’t use it.
  pub fn unbound<T>(&self) -> Uniform<T> where T: Uniformable {
    Uniform::unbound(self.raw.handle)
  }
}

/// Errors that a `Program` can generate.
#[derive(Clone, Debug)]
pub enum ProgramError {
  StageError(StageError),
  /// Program link failed. You can inspect the reason by looking at the contained `String`.
  LinkFailed(String),
  /// Some uniform configuration is ill-formed. It can be a problem of inactive uniform, mismatch
  /// type, etc. Check the `UniformWarning` type for more information.
  UniformWarning(UniformWarning)
}

impl fmt::Display for ProgramError {
  fn fmt(&self, f: &mut fmt::Formatter) -> ::std::result::Result<(), fmt::Error> {
    f.write_str(self.description())
  }
}

impl Error for ProgramError {
  fn description(&self) -> &str {
    match *self {
      ProgramError::StageError(_) => "stage error",
      ProgramError::LinkFailed(ref s) => &s,
      ProgramError::UniformWarning(_) => "uniform warning"
    }
  }

  fn cause(&self) -> Option<&Error> {
    match *self {
      ProgramError::StageError(ref e) => Some(e),
      ProgramError::UniformWarning(ref e) => Some(e),
      _ => None
    }
  }
}

/// Warnings related to uniform issues.
#[derive(Clone, Debug)]
pub enum UniformWarning {
  /// Inactive uniform (not in use / no participation to the final output in shaders).
  Inactive(String),
  /// Type mismatch between the static requested type (i.e. the `T` in `Uniform<T>` for instance)
  /// and the type that got reflected from the backend in the shaders.
  ///
  /// The first `String` is the name of the uniform; the second one gives the type mismatch.
  TypeMismatch(String, String)
}

impl fmt::Display for UniformWarning {
  fn fmt(&self, f: &mut fmt::Formatter) -> ::std::result::Result<(), fmt::Error> {
    f.write_str(self.description())
  }
}

impl Error for UniformWarning {
  fn description(&self) -> &str {
    match *self {
      UniformWarning::Inactive(ref s) => &s,
      UniformWarning::TypeMismatch(..) => "type mismatch"
    }
  }
}

/// A shader uniform. `Uniform<T>` doesn’t hold any value. It’s more like a mapping between the
/// host code and the shader the uniform was retrieved from.
#[derive(Debug)]
pub struct Uniform<T> {
  program: GLuint,
  index: GLint,
  _t: PhantomData<*const T>
}

impl<T> Uniform<T> where T: Uniformable {
  fn new(program: GLuint, index: GLint) -> Self {
    Uniform {
      program: program,
      index: index,
      _t: PhantomData
    }
  }

  fn unbound(program: GLuint) -> Self {
    Uniform {
      program: program,
      index: -1,
      _t: PhantomData
    }
  }

  pub(crate) fn program(&self) -> GLuint {
    self.program
  }

  pub(crate) fn index(&self) -> GLint {
    self.index
  }

  /// Update the value pointed by this uniform.
  pub fn update(&self, x: T) {
    x.update(self);
  }
}

/// Type of a uniform.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Type {
  Integral,
  Unsigned,
  Floating,
  Boolean,
  TextureUnit,
  BufferBinding
}

/// Dimension of the uniform.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Dim {
  Dim1,
  Dim2,
  Dim3,
  Dim4,
  Dim22,
  Dim33,
  Dim44,
  Cubemap
}

/// Types that can behave as `Uniform`.
pub trait Uniformable: Sized {
  /// Update the uniform with a new value.
  fn update(self, u: &Uniform<Self>);
  /// Retrieve the `Type` of the uniform.
  fn ty() -> Type;
  /// Retrieve the `Dim` of the uniform.
  fn dim() -> Dim;
}

impl Uniformable for i32 {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1i(u.index, self) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim1 }
}

impl Uniformable for [i32; 2] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform2iv(u.index, 1, &self as *const i32) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim2 }
}

impl Uniformable for [i32; 3] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform3iv(u.index, 1, &self as *const i32) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim3 }
}

impl Uniformable for [i32; 4] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform4iv(u.index, 1, &self as *const i32) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim4 }
}

impl<'a> Uniformable for &'a [i32] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1iv(u.index, self.len() as GLsizei, self.as_ptr()) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim1 }
}

impl<'a> Uniformable for &'a [[i32; 2]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform2iv(u.index, self.len() as GLsizei, self.as_ptr() as *const i32) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim2 }
}

impl<'a> Uniformable for &'a [[i32; 3]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform3iv(u.index, self.len() as GLsizei, self.as_ptr() as *const i32) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim3 }
}

impl<'a> Uniformable for &'a [[i32; 4]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform4iv(u.index, self.len() as GLsizei, self.as_ptr() as *const i32) }
  }

  fn ty() -> Type { Type::Integral }

  fn dim() -> Dim { Dim::Dim4 }
}

impl Uniformable for u32 {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1ui(u.index, self) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim1 }
}

impl Uniformable for [u32; 2] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform2uiv(u.index, 1, &self as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim2 }
}

impl Uniformable for [u32; 3] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform3uiv(u.index, 1, &self as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim3 }
}

impl Uniformable for [u32; 4] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform4uiv(u.index, 1, &self as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim4 }
}

impl<'a> Uniformable for &'a [u32] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1uiv(u.index, self.len() as GLsizei, self.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim1 }
}

impl<'a> Uniformable for &'a [[u32; 2]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform2uiv(u.index, self.len() as GLsizei, self.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim2 }
}

impl<'a> Uniformable for &'a [[u32; 3]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform3uiv(u.index, self.len() as GLsizei, self.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim3 }
}

impl<'a> Uniformable for &'a [[u32; 4]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform4uiv(u.index, self.len() as GLsizei, self.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Unsigned }

  fn dim() -> Dim { Dim::Dim4 }
}

impl Uniformable for f32 {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1f(u.index, self) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim1 }
}

impl Uniformable for [f32; 2] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform2fv(u.index, 1, &self as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim2 }
}

impl Uniformable for [f32; 3] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform3fv(u.index, 1, &self as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim3 }
}

impl Uniformable for [f32; 4] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform4fv(u.index, 1, &self as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim4 }
}

impl<'a> Uniformable for &'a [f32] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1fv(u.index, self.len() as GLsizei, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim1 }
}

impl<'a> Uniformable for &'a [[f32; 2]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform2fv(u.index, self.len() as GLsizei, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim2 }
}

impl<'a> Uniformable for &'a [[f32; 3]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform3fv(u.index, self.len() as GLsizei, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim3 }
}

impl<'a> Uniformable for &'a [[f32; 4]] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform4fv(u.index, self.len() as GLsizei, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim4 }
}

impl Uniformable for M22 {
  fn update(self, u: &Uniform<Self>) {
    let v = [self];
    unsafe { gl::UniformMatrix2fv(u.index, 1, gl::FALSE, v.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim22 }
}

impl Uniformable for M33 {
  fn update(self, u: &Uniform<Self>) {
    let v = [self];
    unsafe { gl::UniformMatrix3fv(u.index, 1, gl::FALSE, v.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim33 }
}

impl Uniformable for M44 {
  fn update(self, u: &Uniform<Self>) {
    let v = [self];
    unsafe { gl::UniformMatrix4fv(u.index, 1, gl::FALSE, v.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim44 }
}

impl<'a> Uniformable for &'a [M22] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::UniformMatrix2fv(u.index, self.len() as GLsizei, gl::FALSE, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim22 }
}

impl<'a> Uniformable for &'a [M33] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::UniformMatrix3fv(u.index, self.len() as GLsizei, gl::FALSE, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim33 }
}

impl<'a> Uniformable for &'a [M44] {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::UniformMatrix4fv(u.index, self.len() as GLsizei, gl::FALSE, self.as_ptr() as *const f32) }
  }

  fn ty() -> Type { Type::Floating }

  fn dim() -> Dim { Dim::Dim44 }
}

impl Uniformable for bool {
  fn update(self, u: &Uniform<Self>) {
    unsafe { gl::Uniform1ui(u.index, self as GLuint) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim1 }
}

impl Uniformable for [bool; 2] {
  fn update(self, u: &Uniform<Self>) {
    let v = [self[0] as u32, self[1] as u32];
    unsafe { gl::Uniform2uiv(u.index, 1, &v as *const u32) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim2 }
}

impl Uniformable for [bool; 3] {
  fn update(self, u: &Uniform<Self>) {
    let v = [self[0] as u32, self[1] as u32, self[2] as u32];
    unsafe { gl::Uniform3uiv(u.index, 1, &v as *const u32) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim3 }
}

impl Uniformable for [bool; 4] {
  fn update(self, u: &Uniform<Self>) {
    let v = [self[0] as u32, self[1] as u32, self[2] as u32, self[3] as u32];
    unsafe { gl::Uniform4uiv(u.index, 1,  &v as *const u32) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim4 }
}

impl<'a> Uniformable for &'a [bool] {
  fn update(self, u: &Uniform<Self>) {
    let v: Vec<_> = self.iter().map(|x| *x as u32).collect();
    unsafe { gl::Uniform1uiv(u.index, v.len() as GLsizei, v.as_ptr()) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim1 }
}

impl<'a> Uniformable for &'a [[bool; 2]] {
  fn update(self, u: &Uniform<Self>) {
    let v: Vec<_> = self.iter().map(|x| [x[0] as u32, x[1] as u32]).collect();
    unsafe { gl::Uniform2uiv(u.index, v.len() as GLsizei, v.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim2 }
}

impl<'a> Uniformable for &'a [[bool; 3]] {
  fn update(self, u: &Uniform<Self>) {
    let v: Vec<_> = self.iter().map(|x| [x[0] as u32, x[1] as u32, x[2] as u32]).collect();
    unsafe { gl::Uniform3uiv(u.index, v.len() as GLsizei, v.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim3 }
}

impl<'a> Uniformable for &'a [[bool; 4]] {
  fn update(self, u: &Uniform<Self>) {
    let v: Vec<_> = self.iter().map(|x| [x[0] as u32, x[1] as u32, x[2] as u32, x[3] as u32]).collect();
    unsafe { gl::Uniform4uiv(u.index, v.len() as GLsizei, v.as_ptr() as *const u32) }
  }

  fn ty() -> Type { Type::Boolean }

  fn dim() -> Dim { Dim::Dim4 }
}

fn uniform_type_match(program: GLuint, name: &str, ty: Type, dim: Dim) -> ::std::result::Result<(), String> {
  let mut size: GLint = 0;
  let mut typ: GLuint = 0;
  let c_name = CString::new(name.as_bytes()).unwrap();

  unsafe {
    // get the max length of the returned names
    let mut max_len = 0;
    gl::GetProgramiv(program, gl::ACTIVE_UNIFORM_MAX_LENGTH, &mut max_len);

    // get the index of the uniform
    let mut index = 0;
    let mut name_ = Vec::<i8>::with_capacity(max_len as usize);
    gl::GetUniformIndices(program, 1, [c_name.as_ptr() as *const i8].as_ptr(), &mut index);

    // get its size and type
    gl::GetActiveUniform(program, index, max_len, null_mut(), &mut size, &mut typ, name_.as_mut_ptr());
  }

  // FIXME
  // early-return if array – we don’t support them yet
  if size != 1 {
    return Ok(());
  }

  match (ty, dim) {
    (Type::Integral, Dim::Dim1) if typ != gl::INT => Err("requested int doesn't match".to_owned()),
    (Type::Integral, Dim::Dim2) if typ != gl::INT_VEC2 => Err("requested ivec2 doesn't match".to_owned()),
    (Type::Integral, Dim::Dim3) if typ != gl::INT_VEC3 => Err("requested ivec3 doesn't match".to_owned()),
    (Type::Integral, Dim::Dim4) if typ != gl::INT_VEC4 => Err("requested ivec4 doesn't match".to_owned()),
    (Type::Unsigned, Dim::Dim1) if typ != gl::UNSIGNED_INT => Err("requested uint doesn't match".to_owned()),
    (Type::Unsigned, Dim::Dim2) if typ != gl::UNSIGNED_INT_VEC2 => Err("requested uvec2 doesn't match".to_owned()),
    (Type::Unsigned, Dim::Dim3) if typ != gl::UNSIGNED_INT_VEC3 => Err("requested uvec3 doesn't match".to_owned()),
    (Type::Unsigned, Dim::Dim4) if typ != gl::UNSIGNED_INT_VEC4 => Err("requested uvec4 doesn't match".to_owned()),
    (Type::Floating, Dim::Dim1) if typ != gl::FLOAT => Err("requested float doesn't match".to_owned()),
    (Type::Floating, Dim::Dim2) if typ != gl::FLOAT_VEC2 => Err("requested vec2 doesn't match".to_owned()),
    (Type::Floating, Dim::Dim3) if typ != gl::FLOAT_VEC3 => Err("requested vec3 doesn't match".to_owned()),
    (Type::Floating, Dim::Dim4) if typ != gl::FLOAT_VEC4 => Err("requested vec4 doesn't match".to_owned()),
    (Type::Floating, Dim::Dim22) if typ != gl::FLOAT_MAT2 => Err("requested mat2 doesn't match".to_owned()),
    (Type::Floating, Dim::Dim33) if typ != gl::FLOAT_MAT3 => Err("requested mat3 doesn't match".to_owned()),
    (Type::Floating, Dim::Dim44) if typ != gl::FLOAT_MAT4 => Err("requested mat4 doesn't match".to_owned()),
    (Type::Boolean, Dim::Dim1) if typ != gl::BOOL => Err("requested bool doesn't match".to_owned()),
    (Type::Boolean, Dim::Dim2) if typ != gl::BOOL_VEC2 => Err("requested bvec2 doesn't match".to_owned()),
    (Type::Boolean, Dim::Dim3) if typ != gl::BOOL_VEC3 => Err("requested bvec3 doesn't match".to_owned()),
    (Type::Boolean, Dim::Dim4) if typ != gl::BOOL_VEC4 => Err("requested bvec4 doesn't match".to_owned()),
    _ => Ok(())
  }
}

/// Create a new `struct` that represents a *uniform interface* and automatically derive the
/// `impl for UniformInterface`.
///
/// The macro is very simple to use. You declare a struct as you would normally do:
///
/// ```
/// uniform_interface! {
///   struct MyIface {
///     time: f32,
///     resolution: [f32; 4]
///   }
/// }
/// ```
///
/// The effect of this declaration is declaring the `MyIface` struct along with an effective
/// implementation of `UniformInterface` that will try to get the `"time"` and `"resolution"`
/// uniforms in the corresponding shader program. If any of the two uniforms fails to map (inactive
/// uniform, for instance), the whole struct cannot be generated, and an error is arisen (see
/// `UniformInterface::uniform_interface`’s documentation for further details).
///
/// If you don’t use a parameter in your shader, you might not want the whole interface to fail
/// building if that parameter cannot be mapped. You can do that via the `#[unbound]` field
/// attribute:
///
/// ```
/// uniform_interface! {
///   struct MyIface {
///     #[unbound]
///     time: f32, // if this field cannot be mapped, it’ll be ignored
///     resolution: [f32; 4]
///   }
/// }
/// ```
///
/// You can also change the default mapping with the `#[as(string_mapping)]` attribute. This changes
/// the name that must be queried from the shader program for the mapping to be complete:
///
/// ```
/// uniform_interface! {
///   struct MyIface {
///     time: f32,
///     #[as("res")]
///     resolution: [f32; 4] // must map "res" from the shader program
///   }
/// }
/// ```
///
/// Finally, you can mix both attributes if you want to change the mapping and have an unbound
/// uniform if it cannot be mapped:
///
/// ```
/// uniform_interface! {
///   struct MyIface {
///     time: f32,
///     #[as("res"), unbound]
///     resolution: [f32; 4] // must map "res" from the shader program and ignored otherwise
///   }
/// }
/// ```
#[macro_export]
macro_rules! uniform_interface {
  (struct $struct_name:ident { $($fields:tt)* }) => {
    uniform_interface_build_struct!([], $struct_name, $($fields)*);
    uniform_interface_impl_trait!($struct_name, $($fields)*);
  };

  (pub struct $struct_name:ident { $($fields:tt)* }) => {
    uniform_interface_build_struct!([pub], $struct_name, $($fields)*);
    uniform_interface_impl_trait!($struct_name, $($fields)*);
  };

  (pub($visibility:tt) struct $struct_name:ident { $($fields:tt)* }) => {
    uniform_interface_build_struct!([pub($visibility)], $struct_name, $($fields)*);
    uniform_interface_impl_trait!($struct_name, $($fields)*);
  };
}

#[macro_export]
macro_rules! uniform_interface_build_struct {
  ([$($visibility:tt)*], $struct_name:ident, $($(#[$($field_attrs:tt)*])* $field_name:ident : $field_ty:ty),+) => {
    $($visibility)* struct $struct_name {
      $(
        $field_name: $crate::shader::program::Uniform<$field_ty>
      ),+
    }
  }
}

#[macro_export]
macro_rules! uniform_interface_impl_trait {
  ($struct_name:ident, $($(#[$($field_attrs:tt)*])* $field_name:ident : $field_ty:ty),+) => {
    impl $crate::shader::program::UniformInterface for $struct_name {
      fn uniform_interface(
        builder: $crate::shader::program::UniformBuilder
      ) -> ::std::result::Result<(Self, Vec<$crate::shader::program::UniformWarning>), $crate::shader::program::ProgramError> {
        #[allow(unused_mut)]
        let mut warnings = Vec::new();

        $(
          uniform_interface_impl_trait_map!(builder, warnings, $field_name $(#[$($field_attrs)*])*);
        )+

        let iface = $struct_name { $($field_name),+ };
        Ok((iface, warnings))
      }
    }
  }
}

#[macro_export]
macro_rules! uniform_interface_impl_trait_map {
  // this form authorizes to specify the mapping
  // this form authorizes unmapped uniforms by overriding them with an unbound uniform
  ($builder:ident, $warnings:ident, $field_name:ident #[as($field_mapping:expr), unbound]) => {
    let $field_name = $builder.ask($field_mapping).unwrap_or_else(|warning| {
      $warnings.push(warning);
      $builder.unbound()
    });
  };

  // same form as above but with flipped annotations
  ($builder:ident, $warnings:ident, $field_name:ident #[unbound, as($field_mapping:expr)]) => {
    let $field_name = $builder.ask($field_mapping).unwrap_or_else(|warning| {
      $warnings.push(warning);
      $builder.unbound()
    });
  };

  // this form authorizes to specify the mapping
  // this form will make the whole uniform interface not to build on any error
  ($builder:ident, $warnings:ident, $field_name:ident #[as($field_mapping:expr)]) => {
    let $field_name = $builder.ask($field_mapping).map_err($crate::shader::program::ProgramError::UniformWarning)?;
  };

  // this form authorizes unmapped uniforms by overriding them with an unbound uniform
  ($builder:ident, $warnings:ident, $field_name:ident #[unbound]) => {
    let $field_name = $builder.ask(stringify!($field_name)).unwrap_or_else(|warning| {
      $warnings.push(warning);
      $builder.unbound()
    });
  };

  // this form will make the whole uniform interface not to build on any error
  ($builder:ident, $warnings:ident, $field_name:ident) => {
    let $field_name = $builder.ask(stringify!($field_name)).map_err($crate::shader::program::ProgramError::UniformWarning)?;
  }
}