1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//! Static GPU typed arrays.
//!
//! A GPU buffer is a typed continuous region of data. It has a size and can hold several elements.
//!
//! Buffers are created with the `new` associated function. You pass in the number of elements you
//! want in the buffer.
//!
//! ```
//! let buffer: Buffer<f32> = Buffer::new(5);
//! ```
//! Once the buffer is created, you can perform several operations on them:
//!
//! - writing to them ;
//! - reading from them ;
//! - passing them around as uniforms ;
//! - etc.
//!
//! However, you cannot change their size.
//!
//! # Writing to a buffer
//!
//! `Buffer`s support several write methods. The simple one is *clearing*. That is, replacing the
//! whole content of the buffer with a single value. Use the `clear` function to do so.
//!
//! ```
//! buffer.clear(0.);
//! ```
//!
//! If you want to clear the buffer by providing a value for each elements, you want *filling*. Use
//! the `fill` function:
//!
//! ```
//! buffer.fill([1, 2, 3, 4, 5]);
//! ```
//!
//! If you want to change a value at a given index, you can use the `set` function.
//!
//! ```
//! buffer.set(3, 3.14);
//! ```
//!
//! # Reading from the buffer
//!
//! You can either retrieve the `whole` content of the `Buffer` or `get` a value with an index.
//!
//! ```
//! // get the whole content
//! let all_elems = buffer.whole();
//! assert_eq!(all_elems, vec![1, 2, 3, 3.14, 5]); // admit floating equalities
//!
//! // get the element at index 3
//! assert_eq!(buffer.at(3), Some(3.14));
//! ```
//!
//! # Uniform buffer
//!
//! It’s possible to use buffers as *uniform buffers*. That is, buffers that will be in bound at
//! rendering time and which content will be available for a shader to read (no write).
//!
//! In order to use your buffers in a uniform context, the inner type has to implement
//! `UniformBlock`. Keep in mind alignment must be respected and is a bit peculiar. TODO: explain
//! std140 here.

use gl;
use gl::types::*;
use std::cmp::Ordering;
use std::error::Error;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;
use std::ptr;
use std::slice;
use std::vec::Vec;

use linear::{M22, M33, M44};

/// Buffer errors.
#[derive(Debug, Eq, PartialEq)]
pub enum BufferError {
  Overflow,
  TooFewValues,
  TooManyValues,
  MapFailed
}

impl Error for BufferError {
  fn description(&self) -> &str {
    match *self {
      BufferError::Overflow => "buffer overflow",
      BufferError::TooFewValues => "too few values",
      BufferError::TooManyValues => "too many values",
      BufferError::MapFailed => "map failed"
    }
  }
}

impl fmt::Display for BufferError {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    f.write_str(self.description())
  }
}

/// A `Buffer` is a GPU region you can picture as an array. It has a static size and cannot be
/// resized. The size is expressed in number of elements lying in the buffer, not in bytes.
#[derive(Debug, Eq, PartialEq)]
pub struct Buffer<T> {
  raw: RawBuffer,
  _t: PhantomData<T>
}

impl<T> Buffer<T> {
  /// Create a new `Buffer` with a given number of elements.
  pub fn new(len: usize) -> Buffer<T> {
    let mut buffer: GLuint = 0;
    let bytes = mem::size_of::<T>() * len;

    unsafe {
      gl::GenBuffers(1, &mut buffer);
      gl::BindBuffer(gl::ARRAY_BUFFER, buffer);
      gl::BufferData(gl::ARRAY_BUFFER, bytes as isize, ptr::null(), gl::STREAM_DRAW);
      gl::BindBuffer(gl::ARRAY_BUFFER, 0);
    }

    Buffer {
      raw: RawBuffer {
        handle: buffer,
        bytes: bytes,
        len: len,
      },
      _t: PhantomData
    }
  }

  /// Get the length of the buffer.
  pub fn len(&self) -> usize {
    self.len
  }

  /// Retrieve an element from the `Buffer`.
  ///
  /// Checks boundaries.
  pub fn at(&self, i: usize) -> Option<T> where T: Copy {
    if i >= self.len {
      return None;
    }

    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.handle);
      let ptr = gl::MapBuffer(gl::ARRAY_BUFFER, gl::READ_ONLY) as *const T;

      let x = *ptr.offset(i as isize);

      let _ = gl::UnmapBuffer(gl::ARRAY_BUFFER);
      gl::BindBuffer(gl::ARRAY_BUFFER, 0);

      Some(x)
    }
  }

  /// Retrieve the whole content of the `Buffer`.
  pub fn whole(&self) -> Vec<T> where T: Copy {
    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.handle);
      let ptr = gl::MapBuffer(gl::ARRAY_BUFFER, gl::READ_ONLY) as *mut T;

      let values = Vec::from_raw_parts(ptr, self.len, self.len);

      let _ = gl::UnmapBuffer(gl::ARRAY_BUFFER);
      gl::BindBuffer(gl::ARRAY_BUFFER, 0);

      values
    }
  }

  /// Set a value at a given index in the `Buffer`.
  ///
  /// Checks boundaries.
  pub fn set(&mut self, i: usize, x: T) -> Result<(), BufferError> where T: Copy {
    if i >= self.len {
      return Err(BufferError::Overflow);
    }

    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.handle);
      let ptr = gl::MapBuffer(gl::ARRAY_BUFFER, gl::WRITE_ONLY) as *mut T;

      *ptr.offset(i as isize) = x;

      let _ = gl::UnmapBuffer(gl::ARRAY_BUFFER);
      gl::BindBuffer(gl::ARRAY_BUFFER, 0);
    }

    Ok(())
  }

  /// Write a whole slice into a buffer.
  ///
  /// If the slice you pass in as less items than the length of the buffer, you’ll get a
  /// `BufferError::TooFewValues`. If it has more, you’ll get `BufferError::TooManyValues`.
  ///
  /// In all cases, the copy will be performed and clamped to reasonable length.
  pub fn write_whole(&self, values: &[T]) -> Result<(), BufferError> {
    let in_bytes = values.len() * mem::size_of::<T>();

    // generate warning and recompute the proper number of bytes to copy
    let (warning, real_bytes) = match in_bytes.cmp(&self.bytes) {
      Ordering::Less => (Some(BufferError::TooFewValues), in_bytes),
      Ordering::Greater => (Some(BufferError::TooManyValues), self.bytes),
      _ => (None, in_bytes)
    };

    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.handle);
      let ptr = gl::MapBuffer(gl::ARRAY_BUFFER, gl::WRITE_ONLY);

      ptr::copy_nonoverlapping(values.as_ptr() as *const c_void, ptr, real_bytes);

      let _ = gl::UnmapBuffer(gl::ARRAY_BUFFER);
      gl::BindBuffer(gl::ARRAY_BUFFER, 0);
    }

    match warning {
      Some(w) => Err(w),
      None => Ok(())
    }
  }

  /// Fill the `Buffer` with a single value.
  pub fn clear(&self, x: T) where T: Copy {
    let _ = self.write_whole(&vec![x; self.len]);
  }

  /// Fill the whole buffer with an array.
  pub fn fill(&self, values: &[T]) {
    let _ = self.write_whole(values);
  }

  /// Convert a buffer to its raw representation.
  pub fn to_raw(self) -> RawBuffer {
    let raw = RawBuffer {
      handle: self.handle,
      bytes: self.bytes,
      len: self.len
    };

    // forget self so that we don’t call drop on it after the function has returned
    mem::forget(self);
    raw
  }

  /// Obtain an immutable slice view into the buffer.
  pub fn as_slice(&self) -> Result<BufferSlice<T>, BufferError> {
    self.raw.as_slice()
  }

  /// Obtain a mutable slice view into the buffer.
  pub fn as_slice_mut(&mut self) -> Result<BufferSliceMut<T>, BufferError> {
    self.raw.as_slice_mut()
  }
}

impl<T> Deref for Buffer<T> {
  type Target = RawBuffer;

  fn deref(&self) -> &Self::Target {
    &self.raw
  }
}

impl<T> DerefMut for Buffer<T> {
  fn deref_mut(&mut self) -> &mut Self::Target {
    &mut self.raw
  }
}

/// Raw buffer. Any buffer can be converted to that type. However, keep in mind that even though
/// type erasure is safe, creating a buffer from a raw buffer is not.
#[derive(Debug, Eq, PartialEq)]
pub struct RawBuffer {
  handle: GLuint,
  bytes: usize,
  len: usize
}

impl RawBuffer {
  /// Obtain an immutable slice view into the buffer.
  pub fn as_slice<T>(&self) -> Result<BufferSlice<T>, BufferError> {
    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.handle);

      let ptr = gl::MapBuffer(gl::ARRAY_BUFFER, gl::READ_ONLY) as *const T;

      if ptr.is_null() {
        return Err(BufferError::MapFailed);
      }

      Ok(BufferSlice {
        raw: self,
        ptr: ptr,
        _t: PhantomData
      })
    }
  }

  /// Obtain a mutable slice view into the buffer.
  pub fn as_slice_mut<T>(&mut self) -> Result<BufferSliceMut<T>, BufferError> {
    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.handle);

      let ptr = gl::MapBuffer(gl::ARRAY_BUFFER, gl::READ_WRITE) as *mut T;

      if ptr.is_null() {
        return Err(BufferError::MapFailed);
      }

      Ok(BufferSliceMut {
        raw: self,
        ptr: ptr,
        _t: PhantomData
      })
    }
  }

  pub(crate) fn handle(&self) -> GLuint {
    self.handle
  }
}

impl<T> Drop for Buffer<T> {
  fn drop(&mut self) {
    unsafe { gl::DeleteBuffers(1, &self.handle) }
  }
}

impl<T> From<Buffer<T>> for RawBuffer {
  fn from(buffer: Buffer<T>) -> Self {
    buffer.to_raw()
  }
}

/// A buffer slice mapped into GPU memory.
#[derive(Debug, Eq, PartialEq)]
pub struct BufferSlice<'a, T> where T: 'a {
  /// Borrowed raw buffer.
  raw: &'a RawBuffer,
  /// Raw pointer into the GPU memory.
  ptr: *const T,
  _t: PhantomData<&'a T>
}

impl<'a, T> Drop for BufferSlice<'a, T> where T: 'a {
  fn drop(&mut self) {
    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.raw.handle);
      gl::UnmapBuffer(gl::ARRAY_BUFFER);
    }
  }
}

impl<'a, T> Deref for BufferSlice<'a, T> where T: 'a {
  type Target = [T];

  fn deref(&self) -> &Self::Target {
    unsafe { slice::from_raw_parts(self.ptr, self.raw.len) }
  }
}

impl<'a, 'b, T> IntoIterator for &'b BufferSlice<'a, T> where T: 'a {
  type Item = &'b T;
  type IntoIter = slice::Iter<'b, T>;

  fn into_iter(self) -> Self::IntoIter {
    self.deref().into_iter()
  }
}

/// A buffer mutable slice into GPU memory.
#[derive(Debug, Eq, PartialEq)]
pub struct BufferSliceMut<'a, T> where T: 'a {
  /// Borrowed buffer.
  raw: &'a RawBuffer,
  /// Raw pointer into the GPU memory.
  ptr: *mut T,
  _t: PhantomData<&'a mut T>
}

impl<'a, 'b, T> IntoIterator for &'b BufferSliceMut<'a, T> where T: 'a {
  type Item = &'b T;
  type IntoIter = slice::Iter<'b, T>;

  fn into_iter(self) -> Self::IntoIter {
    self.deref().into_iter()
  }
}

impl<'a, 'b, T> IntoIterator for &'b mut BufferSliceMut<'a, T> where T: 'a {
  type Item = &'b mut T;
  type IntoIter = slice::IterMut<'b, T>;

  fn into_iter(self) -> Self::IntoIter {
    self.deref_mut().into_iter()
  }
}

impl<'a, T> Drop for BufferSliceMut<'a, T> where T: 'a {
  fn drop(&mut self) {
    unsafe {
      gl::BindBuffer(gl::ARRAY_BUFFER, self.raw.handle);
      gl::UnmapBuffer(gl::ARRAY_BUFFER);
    }
  }
}

impl<'a, T> Deref for BufferSliceMut<'a, T> where T: 'a {
  type Target = [T];

  fn deref(&self) -> &Self::Target {
    unsafe { slice::from_raw_parts(self.ptr, self.raw.len) }
  }
}

impl<'a, T> DerefMut for BufferSliceMut<'a, T> where T: 'a {
  fn deref_mut(&mut self) -> &mut Self::Target {
    unsafe { slice::from_raw_parts_mut(self.ptr, self.raw.len) }
  }
}

/// Typeclass of types that can be used inside a uniform block. You have to be extra careful when
/// using uniform blocks and ensure you respect the OpenGL *std140* alignment / size rules. This
/// will be fixed in a future release.
pub trait UniformBlock {}

impl UniformBlock for u8 {}
impl UniformBlock for u16 {}
impl UniformBlock for u32 {}

impl UniformBlock for i8 {}
impl UniformBlock for i16 {}
impl UniformBlock for i32 {}

impl UniformBlock for f32 {}
impl UniformBlock for f64 {}

impl UniformBlock for bool {}

impl UniformBlock for M22 {}
impl UniformBlock for M33 {}
impl UniformBlock for M44 {}

impl UniformBlock for [u8; 2] {}
impl UniformBlock for [u16; 2] {}
impl UniformBlock for [u32; 2] {}

impl UniformBlock for [i8; 2] {}
impl UniformBlock for [i16; 2] {}
impl UniformBlock for [i32; 2] {}

impl UniformBlock for [f32; 2] {}
impl UniformBlock for [f64; 2] {}

impl UniformBlock for [bool; 2] {}

impl UniformBlock for [u8; 3] {}
impl UniformBlock for [u16; 3] {}
impl UniformBlock for [u32; 3] {}

impl UniformBlock for [i8; 3] {}
impl UniformBlock for [i16; 3] {}
impl UniformBlock for [i32; 3] {}

impl UniformBlock for [f32; 3] {}
impl UniformBlock for [f64; 3] {}

impl UniformBlock for [bool; 3] {}

impl UniformBlock for [u8; 4] {}
impl UniformBlock for [u16; 4] {}
impl UniformBlock for [u32; 4] {}

impl UniformBlock for [i8; 4] {}
impl UniformBlock for [i16; 4] {}
impl UniformBlock for [i32; 4] {}

impl UniformBlock for [f32; 4] {}
impl UniformBlock for [f64; 4] {}

impl UniformBlock for [bool; 4] {}

impl<T> UniformBlock for [T] where T: UniformBlock {}

macro_rules! impl_uniform_block_tuple {
  ($( $t:ident ),*) => {
    impl<$($t),*> UniformBlock for ($($t),*) where $($t: UniformBlock),* {}
  }
}

impl_uniform_block_tuple!(A, B);
impl_uniform_block_tuple!(A, B, C);
impl_uniform_block_tuple!(A, B, C, D);
impl_uniform_block_tuple!(A, B, C, D, E);
impl_uniform_block_tuple!(A, B, C, D, E, F);
impl_uniform_block_tuple!(A, B, C, D, E, F, G);
impl_uniform_block_tuple!(A, B, C, D, E, F, G, H);
impl_uniform_block_tuple!(A, B, C, D, E, F, G, H, I);
impl_uniform_block_tuple!(A, B, C, D, E, F, G, H, I, J);