1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//! Vertex formats, associated types and functions.
//!
//! A vertex is a type representing a point. It’s common to find vertex positions, normals, colors
//! or even texture coordinates. However, you’re free to use whichever type you want. Nevertheless,
//! you’re limited to a range of types and dimensions. See `Type` and `Dim` for further details.
//!
//! # `Vertex`
//!
//! ## Rules
//!
//! To be able to use a type as a vertex, you have to implement the `Vertex` trait. That trait
//! represents a mapping between your type and `VertexFormat`. A `VertexFormat` gives runtime hints
//! about your type and restricts the supported type. If you cannot map your type to `VertexFormat`,
//! that means you cannot use it as a `Vertex`.
//!
//! The rule is that your type should have a static size greater than 0 and less than or equal to 4.
//! It should also be either integral, unsigned, floating or boolean. If your type is a complex one
//! – for instance a `struct` – you have to recursively apply that rule to all its fields.
//! For instance, the tuple `(i32, bool)` implements `Vertex` by providing an implementation using
//! the ones of `i32` and `bool`.
//!
//! ## Components list
//!
//! As mentionned above, you can use tuples and structs as `Vertex`. If you look at the definition
//! of `VertexFormat`, you’ll notice that it’s a `Vec<VertexComponentFormat>`. That means simple
//! and primary types map to unit vectors – i.e. their size is 1 – but tuples and structs need
//! several `VertexComponentFormat`s to be represented, hence vectors with sizes greater than 1. No
//! check is made on how many vertex components you’re using – there’s a practical limit, set by the
//! GPU, but it’s not checked (yet).
//!
//! # Generic implementation
//!
//! You have `Vertex` implementations for all the primary types that can be mapped to
//! `VertexFormat`. However, as it’s not possible to automatically implement `Vertex` for your
//! structure (yet?), a type is provided to help you design your vertex type so that you’re
//! automatically provided with a `Vertex` implementation if you use `GTup`.
//!
//! `GTup` is a special type used to represent static heterogeneous list of types. With that in
//! hand, you can easily create `Vertex` types and start using them without even implementing
//! `Vertex`, as long as you use `Vertex` types. Feel free to dig in the `GTup` documentation for
//! further details.
//!
//! If you absolutely want to use your own types – which is legit, you can implement `Vertex` by
//! mapping your inner fields to a tuple or `GTup`, and call the right `Vertex` method on that
//! tuple.

use std::vec::Vec;

use gtup::GTup;

/// A `VertexFormat` is a list of `VertexComponentFormat`s.
pub type VertexFormat = Vec<VertexComponentFormat>;

/// Retrieve the number of components in a `VertexFormat`.
pub fn vertex_format_size(vf: &[VertexComponentFormat]) -> usize {
  vf.len()
}

/// Vertex component format. It gives information on how vertices should be passed to the GPU and
/// optimized in buffers.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct VertexComponentFormat {
  /// Type of the component. See `Type` for further details.
  pub comp_type: Type,
  /// Dimension of the component. It should be in 1–4. See `Dim` for further details.
  pub dim: Dim,
  /// Size in bytes that a single element of the component takes. That is, if your component has
  /// a dimension set to 2, then the unit size should be the size of a single element (not two).
  pub unit_size: usize,
  /// Alignment of the component. The best advice is to respect what Rust does, so it’s highly
  /// recommended to use `::std::mem::align_of` to let it does the job for you.
  pub align: usize
}

/// Possible type of vertex components.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Type {
  Integral,
  Unsigned,
  Floating,
  Boolean
}

/// Possible dimension of vertex components.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Dim {
  Dim1,
  Dim2,
  Dim3,
  Dim4
}

/// A type that can be used as a `Vertex` has to implement that trait – it must provide a mapping
/// to `VertexFormat`.
///
/// If you’re not sure on how to implement that or if you want to use automatic types, feel free
/// to use the primary supported types and `GTup` or tuples.
pub trait Vertex {
  fn vertex_format() -> VertexFormat;
}

/// A hint trait to implement to state whether a vertex type is compatible with another.
///
/// If you have two types `V0: Vertex` and `V1: Vertex`, we say that `V1` is compatible with `V0`
/// only if `&V0::vertex_format()[0..V1::vertex_format().len()] == &V1::vertex_format()[..]`. That
/// is, if `V1` is a sub-slice of `V0` starting at 0.
///
/// We node that as `V1: CompatibleVertex<V0>`.
pub trait CompatibleVertex<V>: Vertex where V: Vertex  {}

impl<V> CompatibleVertex<V> for V where V: Vertex {}

/// Macro used to implement the `Vertex` trait.
///
/// The first form implements `Vertex` for `$t`. `$q` refers to the inner representation of `$t` –
/// for instance, `[f32; N]` has `f32` as inner representation. `$comp_type` is the type of the
/// component (variant of `Type`) and `$dim` is the dimension (variant of `Dim`).
///
/// The second form implement `Vertex` for `$t` for types that have the same inner representation
/// than theirselves – usually, scalars.
macro_rules! impl_base {
  ($t:ty, $q:ty, $comp_type:ident, $dim:ident) => {
    impl Vertex for $t {
      fn vertex_format() -> VertexFormat {
        vec![VertexComponentFormat {
          comp_type: Type::$comp_type,
          dim: Dim::$dim,
          unit_size: ::std::mem::size_of::<$q>(),
          align: ::std::mem::align_of::<$q>()
        }]
      }
    }
  };

  ($t:ty, $comp_type:ident, $dim:ident) => {
    impl_base!($t, $t, $comp_type, $dim);
  }
}

macro_rules! impl_arr {
  ($t:ty, $q:ident) => {
    impl_base!([$t; 1], $t, $q, Dim1);
    impl_base!([$t; 2], $t, $q, Dim2);
    impl_base!([$t; 3], $t, $q, Dim3);
    impl_base!([$t; 4], $t, $q, Dim4);
  }
}

impl Vertex for () {
  fn vertex_format() -> VertexFormat {
    Vec::new()
  }
}

// scalars
impl_base!(i8, Integral, Dim1);
impl_base!(i16, Integral, Dim1);
impl_base!(i32, Integral, Dim1);

impl_base!(u8, Unsigned, Dim1);
impl_base!(u16, Unsigned, Dim1);
impl_base!(u32, Unsigned, Dim1);

impl_base!(f32, Floating, Dim1);
impl_base!(f64, Floating, Dim1);

impl_base!(bool, Floating, Dim1);

// arrays
impl_arr!(i8, Integral);
impl_arr!(i16, Integral);
impl_arr!(i32, Integral);

impl_arr!(u8, Unsigned);
impl_arr!(u16, Unsigned);
impl_arr!(u32, Unsigned);

impl_arr!(f32, Floating);
impl_arr!(f64, Floating);

impl_arr!(bool, Boolean);

impl<A, B> Vertex for GTup<A, B> where A: Vertex, B: Vertex {
  fn vertex_format() -> VertexFormat {
    let mut t = A::vertex_format();
    t.extend(B::vertex_format());
    t
  }
}

macro_rules! impl_vertex_for_tuple {
  ($($t:tt),+) => {
    impl<$($t),+> Vertex for ($($t),+) where $($t: Vertex),+ {
      fn vertex_format() -> VertexFormat {
        <gtup!(:$($t),+) as Vertex>::vertex_format()
      }
    }
  }
}

impl_vertex_for_tuple!(A, B);
impl_vertex_for_tuple!(A, B, C);
impl_vertex_for_tuple!(A, B, C, D);
impl_vertex_for_tuple!(A, B, C, D, E);
impl_vertex_for_tuple!(A, B, C, D, E, F);
impl_vertex_for_tuple!(A, B, C, D, E, F, G);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J, K);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O);
impl_vertex_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P);