1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
use std::cmp::Ordering;
use std::collections::HashSet;
use std::ops::Range;

use failure::Error;

/// Enum describing whether a span is continuous.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum Continuity {
    Continuous,
    Discontinuous,
}

/// Span of a node.
///
/// Spans are non-empty ranges that optionally skip indices.
///
/// Spans are non-inclusive and do not cover the `end`.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Span {
    /// Lower bounds of the span.
    pub start: usize,
    /// Upper bounds of the span.
    pub end: usize,
    skips: Option<HashSet<usize>>,
}

impl From<usize> for Span {
    fn from(idx: usize) -> Self {
        Span {
            start: idx,
            end: idx + 1,
            skips: None,
        }
    }
}

impl Span {
    /// Create new span with skipped indices.
    ///
    /// `skips` has to be non-empty, to construct a span without skips, use `Span::new`.
    ///
    /// Skipped indices outside of lower and upper are ignored.
    pub(crate) fn new_with_skips(lower: usize, upper: usize, skips: HashSet<usize>) -> Self {
        assert!(lower < upper, "Span start has to be smaller then end.");
        assert!(
            !skips.is_empty(),
            "Skips have to be non-empty if using this constructor."
        );
        assert!(upper - lower - skips.len() > 0, "Can't skip all indices.");
        // there is currently no way to ensure that skips are within this span.
        Span {
            start: lower,
            end: upper,
            skips: Some(skips),
        }
    }

    /// Create new continuous span.
    pub(crate) fn new(lower: usize, upper: usize) -> Self {
        assert!(lower < upper, "Span start has to be smaller then end.");
        Span {
            start: lower,
            end: upper,
            skips: None,
        }
    }

    /// Return whether the span covers the index.
    pub fn contains(&self, index: usize) -> bool {
        if self.start <= index && self.end > index {
            self.skips
                .as_ref()
                .map(|skips| !skips.contains(&index))
                .unwrap_or(true)
        } else {
            false
        }
    }

    /// Return whether the span covers a superset of indices of another span.
    pub fn covers_span(&self, other: &Span) -> bool {
        if self.start <= other.start && self.end >= other.end {
            if let Some(skips) = self.skips.as_ref() {
                for skip in skips {
                    if other.contains(*skip) {
                        return false;
                    }
                }
            }
            true
        } else {
            false
        }
    }

    /// Get this spans bounds as a tuple.
    pub fn bounds(&self) -> (usize, usize) {
        (self.start, self.end)
    }

    /// Get the number of indices covered.
    pub fn n_indices(&self) -> usize {
        if let Some(ref skips) = self.skips {
            self.end - self.start - skips.len()
        } else {
            self.end - self.start
        }
    }

    /// Get the skipped indices of this span.
    ///
    /// Returns `None` if the span is continuous.
    pub fn skips(&self) -> Option<&HashSet<usize>> {
        self.skips.as_ref()
    }

    /// Merge coverage of spans.
    pub(crate) fn merge_spans(&mut self, span: &Span) -> Span {
        // find bounds of merged span
        let start = if self.start <= span.start {
            self.start
        } else {
            span.start
        };
        let end = if self.end >= span.end {
            self.end
        } else {
            span.end
        };

        // determine skips by what is not contained in either span.
        let mut skips = HashSet::new();
        for i in start..end {
            if !self.contains(i) && !span.contains(i) {
                skips.insert(i);
            }
        }

        // determine whether span has skipped indices
        if skips.is_empty() {
            Span::new(start, end)
        } else {
            Span::new_with_skips(start, end, skips)
        }
    }

    /// Remove indices from span.
    ///
    /// Panics if `indices` provides as many or more indices than the span covers or if a provided
    /// index is out-of-bounds.
    pub(crate) fn remove_indices(
        &mut self,
        indices: impl IntoIterator<Item = usize>,
    ) -> Continuity {
        // insert all indices to be removed into skips
        let start = self.start;
        let end = self.end;
        let indices = indices.into_iter().map(|idx| {
            assert!(idx >= start && idx < end);
            idx
        });
        let skips = if let Some(skips) = self.skips.as_mut() {
            skips.extend(indices);
            skips
        } else {
            self.skips = Some(indices.collect::<HashSet<_>>());
            self.skips.as_mut().unwrap()
        };

        // make sure not the entire span is removed, false positives can come from indices outside
        // of the span's bounds.
        assert!(
            skips.len() < (self.end - self.start),
            "Can't remove all indices."
        );

        // if bounds are part of the skipped indices, adjust bounds and remove from skips
        while skips.remove(&self.start) {
            self.start += 1;
        }
        // upper bound is exclusive, thus check whether end - 1 is skipped.
        while skips.remove(&(self.end - 1)) {
            self.end -= 1;
        }

        if self.skips.as_ref().map(HashSet::is_empty).unwrap_or(false) {
            self.skips = None;
            Continuity::Continuous
        } else {
            Continuity::Discontinuous
        }
    }

    // Internally used constructor to build a span from a vec.
    pub(crate) fn from_vec(mut coverage: Vec<usize>) -> Result<Self, Error> {
        coverage.sort();
        let (lower, upper) = match (coverage.first(), coverage.last()) {
            (Some(first), Some(last)) => (*first, *last + 1),
            _ => return Err(format_err!("Can't build range from empty vec")),
        };
        let mut skips = HashSet::new();

        let mut prev = upper;
        for id in coverage.into_iter().rev() {
            if prev == id + 1 {
                prev = id;
            } else {
                // duplicate entries end up in this branch but don't get added since the range
                // (id + 1..prev) is empty
                skips.extend(id + 1..prev);

                prev = id;
            }
        }
        if skips.is_empty() {
            Ok(Span::new(lower, upper))
        } else {
            Ok(Span::new_with_skips(lower, upper, skips))
        }
    }

    // Method used internally to increment the upper bounds of a span.
    pub(crate) fn extend(&mut self) {
        self.end += 1;
    }
}

impl Ord for Span {
    /// Order of spans is determined by:
    ///   1. start index
    ///   2. end index
    ///   3. number of covered indices.
    fn cmp(&self, other: &Span) -> Ordering {
        if self.start != other.start {
            self.start.cmp(&other.start)
        } else if self.end != other.end {
            self.end.cmp(&other.end)
        } else {
            self.n_indices().cmp(&other.n_indices())
        }
    }
}

impl PartialOrd for Span {
    fn partial_cmp(&self, other: &Span) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<'a> IntoIterator for &'a Span {
    type Item = usize;
    type IntoIter = SpanIter<'a>;

    fn into_iter(self) -> SpanIter<'a> {
        SpanIter {
            range: self.start..self.end,
            skip: self.skips.as_ref(),
        }
    }
}

/// Iterator over range excluding indices in `skip`.
#[derive(Debug, Eq, PartialEq)]
pub struct SpanIter<'a> {
    range: Range<usize>,
    skip: Option<&'a HashSet<usize>>,
}

impl<'a> Iterator for SpanIter<'a> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(next) = self.range.next() {
            if let Some(skip) = self.skip {
                if skip.contains(&next) {
                    continue;
                }
            }
            return Some(next);
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashSet;

    use crate::Continuity;
    use crate::Span;

    #[test]
    #[should_panic]
    fn invalid_cont_span_2_1() {
        Span::new(2, 1);
    }

    #[test]
    #[should_panic]
    fn invalid_skip_span_2_1() {
        Span::new(2, 1);
    }

    #[test]
    #[should_panic]
    fn invalid_skip_full_span() {
        let mut skip = HashSet::new();
        skip.insert(0);
        skip.insert(1);
        Span::new_with_skips(0, 2, skip);
    }

    #[test]
    fn simple_test() {
        let mut skip = HashSet::new();
        skip.insert(1);
        skip.insert(2);
        let span = Span::new_with_skips(0, 4, skip);
        assert_eq!(span.start, 0);
        assert_eq!(span.end, 4);
        assert_eq!(span.bounds(), (0, 4));
        assert_eq!(span.into_iter().collect::<Vec<_>>(), vec![0, 3]);
    }

    #[test]
    fn contains_skipspan() {
        let skip = vec![3, 5].into_iter().collect::<HashSet<usize>>();
        let span = Span::new_with_skips(0, 10, skip);
        assert!(span.contains(0));
        assert!(span.contains(1));
        assert!(span.contains(2));
        assert!(!span.contains(3));
        assert!(span.contains(4));
        assert!(!span.contains(5));
        assert!(span.contains(6));
        assert!(!span.contains(10));
    }

    #[test]
    fn remove_indices() {
        let skip = vec![3, 5].into_iter().collect::<HashSet<usize>>();
        let span = Span::new_with_skips(0, 10, skip);
        let mut clone = span.clone();
        assert_eq!(Continuity::Continuous, clone.remove_indices(0..5));
        assert_eq!(
            clone,
            Span::from_vec((6..10).into_iter().collect()).unwrap()
        );
        assert_eq!(Continuity::Discontinuous, clone.remove_indices(vec![7]));
        assert_eq!(clone, Span::from_vec(vec![6, 8, 9]).unwrap());
    }
    #[test]
    #[should_panic]
    fn remove_all_indices() {
        let skip = vec![3, 5].into_iter().collect::<HashSet<usize>>();
        let mut span = Span::new_with_skips(0, 10, skip);
        span.remove_indices(0..10);
    }

    #[test]
    fn merge_spans() {
        let skip = vec![3, 5].into_iter().collect::<HashSet<usize>>();
        let span = Span::new_with_skips(0, 10, skip);
        let mut other = span.clone();
        assert_eq!(Continuity::Discontinuous, other.remove_indices(vec![6]));
        other = other.merge_spans(&span);
        assert_eq!(other, span);

        let new_span = Span::from_vec(vec![3, 5]).unwrap();
        other = other.merge_spans(&new_span);
        assert!(other.skips().is_none());
        assert_eq!(
            other,
            Span::from_vec((0..10).into_iter().collect()).unwrap()
        );

        let skip = Span::from_vec((15..20).into_iter().collect()).unwrap();
        other = other.merge_spans(&skip);
        assert!(other.skips().is_some());
        assert_eq!(
            other,
            Span::from_vec(
                (0..20)
                    .into_iter()
                    .filter(|&idx| idx < 10 || idx >= 15)
                    .collect()
            )
            .unwrap()
        )
    }

    #[test]
    fn covers_span() {
        let skip = vec![3, 5].into_iter().collect::<HashSet<usize>>();
        let span = Span::new_with_skips(0, 10, skip);
        assert!(span.covers_span(&0.into()), "start span excluded");
        assert!(span.covers_span(&1.into()), "inside span excluded");
        assert!(!span.covers_span(&3.into()), "skipped idx included");
        assert!(!span.covers_span(&10.into()), "end span included");

        let skip = vec![3, 5].into_iter().collect::<HashSet<usize>>();
        let other = Span::new_with_skips(0, 10, skip);
        assert!(span.covers_span(&other));
        assert!(other.covers_span(&span));

        let skip = vec![7, 8].into_iter().collect::<HashSet<usize>>();
        let other = Span::new_with_skips(6, 10, skip);
        assert!(span.covers_span(&other));
        assert!(!other.covers_span(&span));

        let skip = vec![7, 8].into_iter().collect::<HashSet<usize>>();
        let other = Span::new_with_skips(6, 10, skip);
        assert!(span.covers_span(&other));
        assert!(!other.covers_span(&span));

        let skip = vec![3, 4, 5].into_iter().collect::<HashSet<usize>>();
        let other = Span::new_with_skips(0, 10, skip);
        assert!(span.covers_span(&other));
        assert!(!other.covers_span(&span));

        let skip = vec![3, 4].into_iter().collect::<HashSet<usize>>();
        let other = Span::new_with_skips(0, 10, skip);
        assert!(!span.covers_span(&other));
        assert!(!other.covers_span(&span));

        let skip = vec![3].into_iter().collect::<HashSet<usize>>();
        let other = Span::new_with_skips(0, 10, skip);
        assert!(!span.covers_span(&other));
        assert!(other.covers_span(&span));
    }

    #[test]
    fn contains_no_skips() {
        let span = Span::new(0, 10);
        assert!(span.contains(0));
        assert!(span.contains(1));
        assert!(span.contains(2));
        assert!(span.contains(4));
        assert!(span.contains(6));
        assert!(!span.contains(10))
    }

    #[test]
    fn contains_span() {
        let span = Span::new(0, 10);
        assert!(span.contains(0));
        assert!(span.contains(1));
        assert!(span.contains(2));
        assert!(span.contains(4));
        assert!(span.contains(6));
        assert!(!span.contains(10))
    }

    #[test]
    fn test_from_ordered_vec() {
        let v = vec![1, 2, 4, 6, 8, 10];
        let span = Span::from_vec(v.clone()).unwrap();
        for (target, test) in span.into_iter().zip(v) {
            assert_eq!(target, test)
        }
    }

    #[test]
    fn test_from_vec_duplicates() {
        let v = vec![1, 2, 4, 6, 8, 10];
        let v_t = vec![1, 4, 2, 4, 6, 8, 8, 10];
        let span = Span::from_vec(v_t).unwrap();
        for (target, test) in span.into_iter().zip(v) {
            assert_eq!(target, test)
        }
    }

    #[test]
    fn test_from_vec_single() {
        let v = vec![1];
        let span = Span::from_vec(v.clone()).unwrap();

        for (target, test) in span.into_iter().zip(v) {
            assert_eq!(target, test)
        }
    }

    #[test]
    fn test_empty_vec() {
        assert!(Span::from_vec(vec![]).is_err());
    }

    #[test]
    fn test_from_vec() {
        let v = vec![1, 3];
        let span = Span::from_vec(v.clone()).unwrap();
        if let Some(_) = span.skips() {
            for (target, test) in span.into_iter().zip(v) {
                assert_eq!(target, test);
            }
        } else {
            assert_eq!(0, 1);
        }
    }
}