1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
//! This crate defines data structures to interact with a LUKS2 partition.
//!
//! See the `examples/` folder for how to use this with a real partition
//! or an .iso file on Linux and Windows (all examples need to be modified
//! or require creating some files before they work correctly).
//!
//! You'll probably want to compile in release mode most of the time, or else
//! the master key extraction (which happens everytime a `LuksDevice` is
//! created) will take quite a long time.

/// Recover information that was split antiforensically.
pub mod af;

/// Custom error types.
pub mod error;

/// Password input.
pub mod password;

use self::error::{LuksError, ParseError};
use aes::{Aes128, Aes256, NewBlockCipher};
use bincode::Options;
use hmac::Hmac;
use secrecy::{CloneableSecret, DebugSecret, ExposeSecret, Secret, Zeroize};
use serde::{
    de::{self, Deserializer},
    Deserialize, Serialize,
};
use sha2::Sha256;
use std::{
    cmp::max,
    collections::HashMap,
    fmt::{Debug, Display},
    io::{self, Cursor, ErrorKind, Read, Seek, SeekFrom},
    str::FromStr,
};
use xts_mode::{get_tweak_default, Xts128};

#[macro_use]
extern crate serde_big_array;

big_array! {
    BigArray;
    +184, 7*512
}

/// A LUKS2 header as described
/// [here](https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf).
#[derive(Deserialize, PartialEq, Serialize)]
pub struct LuksHeader {
    /// must be "LUKS\xba\xbe" or "SKUL\xba\xbe"
    pub magic: [u8; 6],
    /// Version 2
    pub version: u16,
    /// header size plus JSON area in bytes
    pub hdr_size: u64,
    /// sequence ID, increased on update
    pub seqid: u64,
    /// ASCII label or empty
    #[serde(with = "BigArray")]
    pub label: [u8; 48],
    /// checksum algorithm, "sha256"
    pub csum_alg: [u8; 32],
    /// salt, unique for every header
    #[serde(with = "BigArray")]
    pub salt: [u8; 64],
    /// UUID of device
    #[serde(with = "BigArray")]
    pub uuid: [u8; 40],
    /// owner subsystem label or empty
    #[serde(with = "BigArray")]
    pub subsystem: [u8; 48],
    /// offset from device start in bytes
    pub hdr_offset: u64,
    // must be zeroed
    #[serde(with = "BigArray")]
    _padding: [u8; 184],
    /// header checksum
    #[serde(with = "BigArray")]
    pub csum: [u8; 64],
    // Padding, must be zeroed
    #[serde(with = "BigArray")]
    _padding4069: [u8; 7 * 512],
}

impl LuksHeader {
    /// Attempt to read a LUKS2 header from a reader.
    ///
    /// Note: a LUKS2 header is always exactly 4096 bytes long.
    pub fn read_from<R: Read>(mut reader: &mut R) -> Result<Self, ParseError> {
        let options = bincode::options().with_big_endian().with_fixint_encoding();
        let h: Self = options.deserialize_from(&mut reader)?;

        // check magic value (must be "LUKS\xba\xbe" or "SKUL\xba\xbe")
        if (h.magic != [0x4c, 0x55, 0x4b, 0x53, 0xba, 0xbe])
            && (h.magic != [0x53, 0x4b, 0x55, 0x4c, 0xba, 0xbe])
        {
            return Err(ParseError::InvalidHeaderMagic);
        }
        // check header version
        if h.version != 2 {
            return Err(ParseError::InvalidHeaderVersion(h.version));
        }

        Ok(h)
    }
}

// implement manually to omit always-zero padding sections
impl Debug for LuksHeader {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}",
            format!(
                "LuksHeader {{ magic: {:?}, version: {:?}, hdr_size: {:?}, seqid: {:?}, \
			label: {:?}, csum_alg: {:?}, salt: {:?}, uuid: {:?}, subsystem: {:?}, \
			hdr_offset: {:?}, csum: {:?} }}",
                self.magic,
                self.version,
                self.hdr_size,
                self.seqid,
                self.label,
                self.csum_alg,
                self.salt,
                self.uuid,
                self.subsystem,
                self.hdr_offset,
                self.csum
            )
        )
    }
}

impl Display for LuksHeader {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        fn bytes_to_str<'a>(empty_text: &'static str, bytes: &'a [u8]) -> &'a str {
            if bytes.iter().all(|el| *el == 0) {
                empty_text
            } else {
                match std::str::from_utf8(bytes) {
                    Ok(s) => s,
                    Err(_) => "<decoding error>",
                }
            }
        }

        fn bytes_to_hex_string(bytes: &[u8]) -> String {
            let mut s = String::with_capacity(bytes.len());
            for b in bytes {
                s += format!("{:02X}", b).as_str()
            }
            s
        }

        let mut magic = String::from_utf8_lossy(&self.magic[..4]).to_string();
        magic += format!("\\x{:x}\\x{:x}", self.magic[4], self.magic[5]).as_str();

        write!(
            f,
            "{}",
            format!(
                "LuksHeader {{\n\
			\tmagic: {},\n\
			\tversion: {},\n\
			\theader size: {},\n\
			\tsequence id: {},\n\
			\tlabel: {},\n\
			\tchecksum algorithm: {},\n\
			\tsalt: {},\n\
			\tuuid: {},\n\
			\tsubsystem label: {},\n\
			\theader offset: {},\n\
			\tchecksum: {}\n\
			}}",
                magic,
                self.version,
                self.hdr_size,
                self.seqid,
                bytes_to_str("<no label>", &self.label),
                bytes_to_str("<no checksum algorithm>", &self.csum_alg),
                bytes_to_hex_string(&self.salt),
                bytes_to_str("<no uuid>", &self.uuid),
                bytes_to_str("<no subsystem label>", &self.subsystem),
                self.hdr_offset,
                bytes_to_hex_string(&self.csum)
            )
        )
    }
}

/// Information on the allocated area in the binary keyslots area of a [`LuksKeyslot`].
///
/// Only the `raw` type is currently used.
#[derive(Debug, Deserialize, PartialEq, Serialize)]
#[serde(tag = "type")]
// enum variant names must match the JSON values exactly, which are lowercase, so no CamelCase names
#[allow(non_camel_case_types)]
pub enum LuksArea {
    raw {
        /// The area encryption algorithm, in dm-crypt notation (e. g. "aes-xts-plain64").
        encryption: String,
        /// The area encryption key size.
        key_size: u32,
        /// The offset from the device start to the beginning of the binary area in bytes.
        #[serde(deserialize_with = "from_str")]
        offset: u64,
        /// The area size in bytes.
        #[serde(deserialize_with = "from_str")]
        size: u64,
    },
}

impl LuksArea {
    /// Returns the encryption algorithm of the area.
    pub fn encryption(&self) -> &String {
        match self {
            LuksArea::raw { encryption, .. } => encryption,
        }
    }

    /// Returns the key size of the area.
    pub fn key_size(&self) -> u32 {
        match self {
            LuksArea::raw { key_size, .. } => *key_size,
        }
    }

    /// Returns the offset of the area.
    pub fn offset(&self) -> u64 {
        match self {
            LuksArea::raw { offset, .. } => *offset,
        }
    }

    /// Returns the size of the area.
    pub fn size(&self) -> u64 {
        match self {
            LuksArea::raw { size, .. } => *size,
        }
    }
}

/// An anti-forensic splitter of a [`LuksKeyslot`]. See
/// [the LUKS1 spec](https://gitlab.com/cryptsetup/cryptsetup/wikis/Specification)
/// for more information.
///
/// Only the `luks1` type compatible with LUKS1 is currently used.
#[derive(Debug, Deserialize, PartialEq, Serialize)]
#[serde(tag = "type")]
// enum variant names must match the JSON values exactly, which are lowercase, so no CamelCase names
#[allow(non_camel_case_types)]
pub enum LuksAf {
    luks1 {
        /// The number of stripes, for historical reasons only the 4000 value is supported.
        stripes: u16, // only value of 4000 supported
        /// The hash algorithm used.
        hash: String,
    },
}

impl LuksAf {
    /// Returns the number of stripes of the anti-forensic splitter.
    pub fn stripes(&self) -> u16 {
        match self {
            LuksAf::luks1 { stripes, .. } => *stripes,
        }
    }

    /// Returns hash algorithm used for the anti-forensic splitter.
    pub fn hash(&self) -> &String {
        match self {
            LuksAf::luks1 { hash, .. } => hash,
        }
    }
}

/// Stores information on the PBKDF type and parameters of a [`LuksKeyslot`].
#[derive(Debug, Deserialize, PartialEq, Serialize)]
#[serde(tag = "type")]
// enum variant names must match the JSON values exactly, which are lowercase, so no CamelCase names
#[allow(non_camel_case_types)]
pub enum LuksKdf {
    pbkdf2 {
        /// The salt for the PBKDF in base64 (binary data).
        salt: String,
        /// The hash algorithm for the PKBDF.
        hash: String,
        /// The PBKDF2 iterations count.
        iterations: u32,
    },
    argon2i {
        /// The salt for the PBKDF in base64 (binary data).
        salt: String,
        /// The time cost (in fact the iterations).
        time: u32,
        /// The memory cost in kilobytes. If not available, the keyslot cannot be unlocked.
        memory: u32,
        /// The required nuber of threads (CPU cores number cost). If not available, unlocking
        /// will be slower.
        cpus: u32,
    },
    argon2id {
        /// The salt for the PBKDF in base64 (binary data).
        salt: String,
        /// The time cost (in fact the iterations).
        time: u32,
        /// The memory cost in kilobytes. If not available, the keyslot cannot be unlocked.
        memory: u32,
        /// The required nuber of threads (CPU cores number cost). If not available, unlocking
        /// will be slower.
        cpus: u32,
    },
}

impl LuksKdf {
    /// Returns the salt for the PBKDF in base64 (binary data).
    pub fn salt(&self) -> &String {
        match self {
            LuksKdf::pbkdf2 { salt, .. } => salt,
            LuksKdf::argon2i { salt, .. } => salt,
            LuksKdf::argon2id { salt, .. } => salt,
        }
    }
}

/// The priority of a [`LuksKeyslot`].
#[derive(Debug, Deserialize, Eq, PartialEq, PartialOrd, Ord, Serialize)]
// to match other enum variant names
#[allow(non_camel_case_types)]
pub enum LuksPriority {
    /// The slot should be used only if explicitly stated.
    ignore,
    /// Normal priority keyslot.
    normal,
    /// Tried before normal priority keyslots.
    high,
}

/// A keyslot contains information about stored keys – areas, where binary keyslot data are located,
/// encryption and anti-forensic function used, password-based key derivation function (PBKDF) and
/// related parameters.
///
/// Only the `luks2` type is currently used.
#[derive(Debug, Deserialize, PartialEq, Serialize)]
#[serde(tag = "type")]
// enum variant names must match the JSON values exactly, which are lowercase, so no CamelCase names
#[allow(non_camel_case_types)]
pub enum LuksKeyslot {
    luks2 {
        /// The size of the key stored in the slot, in bytes.
        key_size: u16,
        /// The allocated area in the binary keyslots area.
        area: LuksArea,
        /// The PBKDF type and parameters used.
        kdf: LuksKdf,
        /// The anti-forensic splitter.
        af: LuksAf,
        /// The keyslot priority (optional).
        #[serde(deserialize_with = "deserialize_priority")]
        #[serde(default)]
        priority: Option<LuksPriority>,
    },
}

impl LuksKeyslot {
    /// Returns the key size of the key stored in the slot, in bytes.
    pub fn key_size(&self) -> u16 {
        match self {
            LuksKeyslot::luks2 { key_size, .. } => *key_size,
        }
    }

    /// Returns the area of the keyslot.
    pub fn area(&self) -> &LuksArea {
        match self {
            LuksKeyslot::luks2 { area, .. } => area,
        }
    }

    /// Returns the key derivation function of the keyslot.
    pub fn kdf(&self) -> &LuksKdf {
        match self {
            LuksKeyslot::luks2 { kdf, .. } => kdf,
        }
    }

    /// Returns the anti-forensic splitter of the keyslot.
    pub fn af(&self) -> &LuksAf {
        match self {
            LuksKeyslot::luks2 { af, .. } => af,
        }
    }

    /// Returns the priority of the keyslot.
    pub fn priority(&self) -> Option<&LuksPriority> {
        match self {
            LuksKeyslot::luks2 { priority, .. } => priority.as_ref(),
        }
    }
}

/// The LUKS2 user data integrity protection type, an experimental feature which is only included
/// for parsing compatibility.
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize)]
pub struct LuksIntegrity {
    #[serde(rename(deserialize = "type"))]
    pub integrity_type: String,
    pub journal_encryption: String,
    pub journal_integrity: String,
}

/// The size of a [`LuksSegment`].
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize)]
// to match other enum variant names
#[allow(non_camel_case_types)]
pub enum LuksSegmentSize {
    /// Signals that the size of the underlying device should be used (dynamic resize).
    dynamic,
    /// The size in bytes.
    fixed(u64),
}

/// A segment contains a definition of encrypted areas on the disk containing user data
/// (in LUKS1 mentioned as the user data payload). For a normal LUKS device, there ist only
/// one data segment present.
///
/// Only the `crypt` type is currently used.
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize)]
#[serde(tag = "type")]
// enum variant names must match the JSON values exactly, which are lowercase, so no CamelCase names
#[allow(non_camel_case_types)]
pub enum LuksSegment {
    crypt {
        /// The offset from the device start to the beginning of the segment in bytes.
        #[serde(deserialize_with = "from_str")]
        offset: u64,
        /// The segment size, see [`LuksSegmentSize`].
        #[serde(deserialize_with = "deserialize_segment_size")]
        size: LuksSegmentSize,
        /// The starting offset for the Initialization Vector.
        #[serde(deserialize_with = "from_str")]
        iv_tweak: u64,
        /// The segment encryption algorithm in dm-crypt notaton (e. g. "aes-xts-plain64").
        encryption: String,
        /// The sector size for the segment (512, 1024, 2048, or 4096 bytes).
        sector_size: u16,
        /// The LUKS2 user data integrity protection type (optional, only included for parsing
        /// compatibility).
        #[serde(default)]
        integrity: Option<LuksIntegrity>,
        /// An array of strings marking the segment with additional information (optional).
        #[serde(default)]
        flags: Option<Vec<String>>,
    },
}

impl LuksSegment {
    /// Returns the offset of the segment.
    pub fn offset(&self) -> u64 {
        match self {
            LuksSegment::crypt { offset, .. } => *offset,
        }
    }

    /// Returns the size of the segment.
    pub fn size(&self) -> &LuksSegmentSize {
        match self {
            LuksSegment::crypt { size, .. } => size,
        }
    }

    /// Returns the starting offset for the Initialization Vector.
    pub fn iv_tweak(&self) -> u64 {
        match self {
            LuksSegment::crypt { iv_tweak, .. } => *iv_tweak,
        }
    }

    /// Returns the segment encryption algorithm.
    pub fn encryption(&self) -> &String {
        match self {
            LuksSegment::crypt { encryption, .. } => encryption,
        }
    }

    /// Returns the sector size of the segment.
    pub fn sector_size(&self) -> u16 {
        match self {
            LuksSegment::crypt { sector_size, .. } => *sector_size,
        }
    }

    /// Returns the integrity object of the segment.
    pub fn integrity(&self) -> Option<&LuksIntegrity> {
        match self {
            LuksSegment::crypt { integrity, .. } => integrity.as_ref(),
        }
    }

    /// Returns the flags of the segment.
    pub fn flags(&self) -> Option<&Vec<String>> {
        match self {
            LuksSegment::crypt { flags, .. } => flags.as_ref(),
        }
    }
}

/// A digest is used to verify that a key decrypted from a keyslot is correct. Digests are assigned
/// to keyslots and segments. If it is not assigned to a segment, then it is a digest for an unbound
/// key. Every keyslot must have one assigned digest. The key digest also specifies the exact key size
/// for the encryption algorithm of the segment.
///
/// Only the `pbkdf2` type compatible with LUKS1 is used.
#[derive(Debug, Deserialize, PartialEq, Serialize)]
#[serde(tag = "type")]
// enum variant names must match the JSON values exactly, which are lowercase, so no CamelCase names
#[allow(non_camel_case_types)]
pub enum LuksDigest {
    pbkdf2 {
        /// A list of keyslot numbers that are assigned to the digest.
        #[serde(deserialize_with = "vec_from_str")]
        keyslots: Vec<u8>,
        /// A list of segment numbers that are assigned to the digest.
        #[serde(deserialize_with = "vec_from_str")]
        segments: Vec<u8>,
        /// The binary salt for the digest, in base64.
        salt: String,
        /// The binary digest data, in base64.
        digest: String,
        /// The hash algorithm used by PBKDF2.
        hash: String,
        /// The PBKDF2 iterations count.
        iterations: u32,
    },
}

impl LuksDigest {
    /// Returns the keyslots assigned to the digest.
    pub fn keyslots(&self) -> &Vec<u8> {
        match self {
            LuksDigest::pbkdf2 { keyslots, .. } => keyslots,
        }
    }

    /// Returns the segments assigned to the digest.
    pub fn segments(&self) -> &Vec<u8> {
        match self {
            LuksDigest::pbkdf2 { segments, .. } => segments,
        }
    }

    /// Returns the salt of the digest.
    pub fn salt(&self) -> &String {
        match self {
            LuksDigest::pbkdf2 { salt, .. } => salt,
        }
    }

    /// Returns the digest of the digest object.
    pub fn digest(&self) -> &String {
        match self {
            LuksDigest::pbkdf2 { digest, .. } => digest,
        }
    }

    /// Returns the hash algorithm used by PBKDF2.
    pub fn hash(&self) -> &String {
        match self {
            LuksDigest::pbkdf2 { hash, .. } => hash,
        }
    }

    /// Returns the PBKDF2 iterations count.
    pub fn iterations(&self) -> u32 {
        match self {
            LuksDigest::pbkdf2 { iterations, .. } => *iterations,
        }
    }
}

/// Global attributes for the LUKS device.
#[derive(Debug, Deserialize, PartialEq, Serialize)]
pub struct LuksConfig {
    /// The JSON area size in bytes. Must match the binary header.
    #[serde(deserialize_with = "from_str")]
    pub json_size: u64,
    /// The binary keyslot area size in bytes. Must be aligned to 4096 bytes.
    #[serde(deserialize_with = "from_str")]
    pub keyslots_size: u64,
    /// An optional list of persistent flags for the device.
    #[serde(default)]
    pub flags: Option<Vec<String>>,
    /// An optional list of additional required featers for the LUKS device.
    #[serde(default)]
    pub requirements: Option<Vec<String>>,
}

/// A token is an object that can describe how to get a passphrase to unlock a particular keyslot.
/// It can also contain additional user-defined JSON metadata. No token types are implemented;
/// this is only included for parsing compatibility.
#[derive(Debug, Deserialize, PartialEq, Serialize)]
pub struct LuksToken {}

/// JSON metadata for the device as described
/// [here](https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf).
#[derive(Debug, Deserialize, PartialEq, Serialize)]
pub struct LuksJson {
    /// Objects describing encrypted keys storage areas.
    pub keyslots: HashMap<u8, LuksKeyslot>,
    /// Tokens can optionally include additional metadata. Only included for parsing compatibility.
    pub tokens: HashMap<u8, LuksToken>,
    /// Segments describe areas on disk that contain user encrypted data.
    pub segments: HashMap<u8, LuksSegment>,
    /// Digests are used to verify that keys decrypted from keyslots are correct. Uses the keys
    /// of keyslots and segments to reference them.
    pub digests: HashMap<u8, LuksDigest>,
    /// Persistent header configuration attributes.
    pub config: LuksConfig,
}

impl LuksJson {
    /// Attempt to read a LUKS2 JSON area from a reader. The reader must contain exactly the JSON data
    /// and nothing more.
    pub fn read_from<R: Read>(mut reader: &mut R) -> Result<Self, ParseError> {
        let j: Self = serde_json::from_reader(&mut reader)?;

        // check that the stripes value of all afs are 4000
        let stripes_ok = j.keyslots.iter().all(|(_, k)| k.af().stripes() == 4000u16);
        if !stripes_ok {
            return Err(ParseError::InvalidStripes);
        }

        // check that sector sizes of all segments are valid
        let sector_sizes_valid = j
            .segments
            .iter()
            .all(|(_, s)| vec![512, 1024, 2048, 4096].contains(&s.sector_size()));
        if !sector_sizes_valid {
            return Err(ParseError::InvalidSectorSize);
        }

        // check that keyslots size is aligned to 4096
        if (j.config.keyslots_size % 4096) != 0 {
            return Err(ParseError::KeyslotNotAligned);
        }

        // check that all segments/keyslots references are valid
        let refs_valid = j.digests.iter().all(|(_, d)| {
            d.keyslots().iter().all(|k| j.keyslots.contains_key(k))
                && d.segments().iter().all(|s| j.keyslots.contains_key(s))
        });
        if !refs_valid {
            return Err(ParseError::InvalidReference);
        }

        Ok(j)
    }
}

// taken from https://github.com/serde-rs/json/issues/317#issuecomment-300251188
fn from_str<'de, T, D>(deserializer: D) -> Result<T, D::Error>
where
    T: FromStr,
    T::Err: Display,
    D: Deserializer<'de>,
{
    let s = String::deserialize(deserializer)?;
    T::from_str(&s).map_err(de::Error::custom)
}

// helper function to deserialize a Vec<T> where all elements are serialized as strings,
// basically deserializing a Vec<String> and mapping T::from_str() onto all elements
fn vec_from_str<'de, T, D>(deserializer: D) -> Result<Vec<T>, D::Error>
where
    T: FromStr,
    T::Err: Display,
    D: Deserializer<'de>,
{
    let v = Vec::<String>::deserialize(deserializer)?;
    // can't use ? operator in closures (at least I couldn't figure out how) so can't use v.iter().map()
    let mut res = Vec::with_capacity(v.len());
    for s in v {
        res.push(T::from_str(&s).map_err(de::Error::custom)?);
    }
    Ok(res)
}

// helper function to deserialize an Option<LuksPriority>
fn deserialize_priority<'de, D>(deserializer: D) -> Result<Option<LuksPriority>, D::Error>
where
    D: Deserializer<'de>,
{
    let p = match Option::<i32>::deserialize(deserializer)? {
        Some(pr) => pr,
        None => return Ok(None),
    };
    match p {
        0 => Ok(Some(LuksPriority::ignore)),
        1 => Ok(Some(LuksPriority::normal)),
        2 => Ok(Some(LuksPriority::high)),
        _ => Err(de::Error::custom(format!("invalid priority {}", p))),
    }
}

// helper function to deserialize a LuksSegmentSize
fn deserialize_segment_size<'de, D>(deserializer: D) -> Result<LuksSegmentSize, D::Error>
where
    D: Deserializer<'de>,
{
    let s = String::deserialize(deserializer)?;
    match s.as_str() {
        "dynamic" => Ok(LuksSegmentSize::dynamic),
        x => Ok(LuksSegmentSize::fixed(
            u64::from_str(x).map_err(de::Error::custom)?,
        )),
    }
}

#[derive(Clone)]
pub struct MasterKey(Vec<u8>);

impl Zeroize for MasterKey {
    fn zeroize(&mut self) {
        self.0.zeroize()
    }
}

impl DebugSecret for MasterKey {}

impl CloneableSecret for MasterKey {}

pub type SecretMasterKey = Secret<MasterKey>;

/// A struct representing a LUKS device.
#[derive(Debug)]
pub struct LuksDevice<T: Read + Seek> {
    device: T,
    master_key: SecretMasterKey,
    current_sector: Cursor<Vec<u8>>,
    current_sector_num: u64,
    /// The header read from the device.
    pub header: LuksHeader,
    /// The JSON section read from the device.
    pub json: LuksJson,
    /// The sector size of the device.
    pub sector_size: usize,
    /// The segment used when reading from the device. Defaults to segment 0. Calls to `seek()` will
    /// be considered relative to `active_segment.offset()` if seeking from the start or `active_segment.size()`
    /// if seeking from the end.
    pub active_segment: LuksSegment,
}

impl<T: Read + Seek> LuksDevice<T> {
    /// Creates a `LuksDevice` from a device (i. e. any type that implements [`Read`] and [`Seek`]).
    /// WARNING: this struct internally stores the master key in *user-space* RAM. Please consider the
    /// security implications this may have.
    pub fn from_device(
        mut device: T,
        password: &[u8],
        sector_size: usize,
    ) -> Result<Self, LuksError> {
        // read and parse LuksHeader
        let mut h = vec![0; 4096];
        device.read_exact(&mut h)?;
        let header = LuksHeader::read_from(&mut Cursor::new(&h))?;

        // read and parse LuksJson
        let mut j = vec![0; (header.hdr_size - 4096) as usize];
        device.read_exact(&mut j)?;
        let j: Vec<u8> = j.iter().map(|b| *b).filter(|b| *b != 0).collect();
        let json = LuksJson::read_from(&mut Cursor::new(&j))?;

        let master_key = Self::decrypt_master_key(password, &json, &mut device, sector_size)?;
        let active_segment = json.segments[&0].clone();

        let mut d = LuksDevice {
            device,
            master_key,
            current_sector: Cursor::new(vec![0; 256]),
            current_sector_num: u64::MAX,
            header,
            json,
            sector_size,
            active_segment,
        };
        d.seek(SeekFrom::Start(0))?;

        Ok(d)
    }

    /// Returns the master key of this volume. WARNING: consider the security implications this may have.
    pub fn master_key(&self) -> SecretMasterKey {
        self.master_key.clone()
    }

    /// The size of the active segment in bytes.
    pub fn active_segment_size(&mut self) -> io::Result<u64> {
        Ok(match self.active_segment.size() {
            LuksSegmentSize::fixed(s) => *s,
            LuksSegmentSize::dynamic => {
                let pos_before = self.device.seek(SeekFrom::Current(0))?;
                let end = self.device.seek(SeekFrom::End(0))?;
                self.device.seek(SeekFrom::Start(pos_before))?;
                end - self.active_segment.offset()
            }
        })
    }

    // tries to decrypt the master key with the given password by trying all available keyslots
    fn decrypt_master_key(
        password: &[u8],
        json: &LuksJson,
        device: &mut T,
        sector_size: usize,
    ) -> Result<SecretMasterKey, LuksError>
    where
        T: Read + Seek,
    {
        let mut keyslots: Vec<&LuksKeyslot> = json.keyslots.values().collect();
        keyslots.sort_by_key(|&ks| ks.priority().unwrap_or(&LuksPriority::normal));

        for &ks in keyslots.iter().rev() {
            // reverse to get highest priority first
            match Self::decrypt_keyslot(password, ks, json, device, sector_size) {
                Ok(mk) => return Ok(mk),
                Err(e) => match e {
                    LuksError::InvalidPassword => {}
                    _ => return Err(e),
                },
            }
        }

        Err(LuksError::InvalidPassword)
    }

    // tries to decrypt the specified keyslot using the given password
    // if successful, returns the master key
    fn decrypt_keyslot(
        password: &[u8],
        keyslot: &LuksKeyslot,
        json: &LuksJson,
        device: &mut T,
        sector_size: usize,
    ) -> Result<SecretMasterKey, LuksError>
    where
        T: Read + Seek,
    {
        let area = keyslot.area();
        let af = keyslot.af();

        // only sha256 is supported
        if af.hash() != "sha256" {
            return Err(LuksError::UnsupportedAfHash(af.hash().to_string()));
        }

        // read area of keyslot
        let mut k = vec![0; keyslot.key_size() as usize * af.stripes() as usize];
        device.seek(SeekFrom::Start(area.offset()))?;
        device.read_exact(&mut k)?;

        // compute master key as hash of password
        let mut pw_hash = vec![0; area.key_size() as usize];
        match keyslot.kdf() {
            LuksKdf::argon2i {
                salt,
                time,
                memory,
                cpus,
            }
            | LuksKdf::argon2id {
                salt,
                time,
                memory,
                cpus,
            } => {
                let variant = if let LuksKdf::argon2i { .. } = keyslot.kdf() {
                    argon2::Variant::Argon2i
                } else {
                    argon2::Variant::Argon2id
                };
                let config = argon2::Config {
                    variant,
                    mem_cost: *memory,
                    time_cost: *time,
                    lanes: *cpus,
                    thread_mode: argon2::ThreadMode::Parallel,
                    hash_length: area.key_size(),
                    ..argon2::Config::default()
                };
                let salt = base64::decode(&salt)?;
                pw_hash = argon2::hash_raw(password, &salt, &config)?;
            }
            LuksKdf::pbkdf2 {
                salt,
                hash,
                iterations,
            } => {
                assert_eq!(hash, "sha256");
                let salt = base64::decode(salt)?;
                pbkdf2::pbkdf2::<Hmac<Sha256>>(password, &salt, *iterations, &mut pw_hash);
            }
        }

        // make pw_hash a secret after hashing
        let pw_hash = Secret::new(pw_hash);

        // decrypt keyslot area using the password hash as key
        match area.key_size() {
            32 => {
                let key1 = Aes128::new_from_slice(&pw_hash.expose_secret()[..16]).unwrap();
                let key2 = Aes128::new_from_slice(&pw_hash.expose_secret()[16..]).unwrap();
                let xts = Xts128::<Aes128>::new(key1, key2);
                xts.decrypt_area(&mut k, sector_size, 0, get_tweak_default);
            }
            64 => {
                let key1 = Aes256::new_from_slice(&pw_hash.expose_secret()[..32]).unwrap();
                let key2 = Aes256::new_from_slice(&pw_hash.expose_secret()[32..]).unwrap();
                let xts = Xts128::<Aes256>::new(key1, key2);
                xts.decrypt_area(&mut k, sector_size, 0, get_tweak_default);
            }
            x => return Err(LuksError::UnsupportedKeySize(x)),
        }

        // make k a secret after decryption
        let k = Secret::new(k);

        // merge and hash master key
        let master_key = Secret::new(MasterKey(af::merge(
            &k.expose_secret(),
            keyslot.key_size() as usize,
            af.stripes() as usize,
        )));
        let digest_actual = base64::decode(json.digests[&0].digest())?;
        let mut digest_computed = vec![0; digest_actual.len()];
        let salt = base64::decode(json.digests[&0].salt())?;
        pbkdf2::pbkdf2::<Hmac<Sha256>>(
            &master_key.expose_secret().0,
            &salt,
            json.digests[&0].iterations(),
            &mut digest_computed,
        );

        // compare digests
        if digest_computed == digest_actual {
            Ok(master_key)
        } else {
            Err(LuksError::InvalidPassword)
        }
    }

    // updates the internal state so that current sector is the one with the given number
    // decrypts the sector, performs boundary checks (returns an error if sector_num too small,
    // goes to last sector if sector_num too big)
    fn go_to_sector(&mut self, sector_num: u64) -> io::Result<()> {
        if sector_num == self.current_sector_num {
            return Ok(());
        } else if sector_num
            < (self.active_segment.offset() / self.active_segment.sector_size() as u64)
        {
            return Err(io::Error::new(
                ErrorKind::InvalidInput,
                "tried to seek to position before active segment",
            ));
        }

        let sector_size = self.active_segment.sector_size() as u64;
        let mut max_sector = self.active_segment_size()? / sector_size;
        if (self.active_segment_size()? % sector_size) != 0 {
            max_sector += 1;
        }

        if sector_num > max_sector {
            return Ok(());
        }

        let sector_pos = SeekFrom::Start(sector_num * sector_size);
        self.device.seek(sector_pos)?;
        let mut sector = vec![0; sector_size as usize];

        if let Err(e) = self.device.read_exact(&mut sector) {
            match e.kind() {
                ErrorKind::UnexpectedEof => {
                    // last sector of device is not of full length
                    // reset position and read again
                    self.device.seek(sector_pos)?;
                    sector = vec![0; sector_size as usize];
                    let bytes_read = self.device.read(&mut sector)?;
                    sector.resize(bytes_read, 0);
                }
                _ => return Err(e),
            }
        }

        if sector.len() != 0 {
            let iv = sector_num
                - (self.active_segment.offset() / self.active_segment.sector_size() as u64);
            let iv = get_tweak_default((iv + self.active_segment.iv_tweak()) as u128);
            match self.master_key.expose_secret().0.len() {
                32 => {
                    let key1 =
                        Aes128::new_from_slice(&self.master_key.expose_secret().0[..16]).unwrap();
                    let key2 =
                        Aes128::new_from_slice(&self.master_key.expose_secret().0[16..]).unwrap();
                    let xts = Xts128::<Aes128>::new(key1, key2);
                    xts.decrypt_sector(&mut sector, iv);
                }
                64 => {
                    let key1 =
                        Aes256::new_from_slice(&self.master_key.expose_secret().0[..32]).unwrap();
                    let key2 =
                        Aes256::new_from_slice(&self.master_key.expose_secret().0[32..]).unwrap();
                    let xts = Xts128::<Aes256>::new(key1, key2);
                    xts.decrypt_sector(&mut sector, iv);
                }
                x => {
                    return Err(io::Error::new(
                        ErrorKind::InvalidInput,
                        format!("Unsupported key size: {}", x),
                    ))
                }
            }
        }

        self.current_sector = Cursor::new(sector);
        self.current_sector_num = sector_num;

        Ok(())
    }
}

impl<T: Read + Seek> Read for LuksDevice<T> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        if self.current_sector.position() == self.active_segment.sector_size() as u64 {
            self.go_to_sector(self.current_sector_num + 1)?;
        }

        self.current_sector.read(buf)
    }
}

impl<T: Read + Seek> Seek for LuksDevice<T> {
    fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
        match pos {
            SeekFrom::Start(p) => {
                let sector_size = self.active_segment.sector_size() as u64;
                let p = p + self.active_segment.offset();
                let sector = p / sector_size;
                self.go_to_sector(sector)?;
                self.current_sector.seek(SeekFrom::Start(p % sector_size))?;
            }
            SeekFrom::End(p) => {
                let sector_size = self.active_segment.sector_size() as i128;
                let p = max(0, p); // limit p to non-positive values (for p > 0 we seek to the end)
                let end = self.active_segment_size()? as i128;
                let sector = (end + p as i128) / sector_size;
                if sector < 0 {
                    return Err(io::Error::new(
                        ErrorKind::InvalidInput,
                        "tried to seek to negative sector",
                    ));
                }
                self.go_to_sector(sector as u64)?;

                let target_pos = (end + p as i128) - sector * sector_size;
                self.current_sector
                    .seek(SeekFrom::Start(target_pos as u64))?;
            }
            SeekFrom::Current(p) => {
                let sector_size = self.active_segment.sector_size() as i128;
                let current = self.current_sector_num as i128 * sector_size
                    + self.current_sector.position() as i128;
                let sector = (current + p as i128) / sector_size;
                if sector < 0 {
                    return Err(io::Error::new(
                        ErrorKind::InvalidInput,
                        "tried to seek to negative sector",
                    ));
                }
                self.go_to_sector(sector as u64)?;

                let target_pos = (current + p as i128) - sector * sector_size;
                self.current_sector
                    .seek(SeekFrom::Start(target_pos as u64))?;
            }
        }

        Ok(
            self.current_sector_num * self.active_segment.sector_size() as u64
                + self.current_sector.position(),
        )
    }
}