1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
//! Functions and other utilities for vector math.
//!
//! The conventions of this library are:
//! The positive X-axis points rightward, and the positive Y-axis
//! points upward. Angles are 0 at (1, 0), increasing counter-clockwise.
//!
//! Many methods have a _mut variant, these are the assignment operators.
//! That is, if the standard variant is +, the _mut variant is +=.

use std::fmt;
use std::ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign, Div, DivAssign};
use std::mem;
use consts::*;
use num;

/// Represents a cartesian vector in the 2D euclidean plane.
#[repr(C)]
#[derive(Clone, Copy, Default, PartialEq, Debug)]
pub struct Vector {
    /// The X component of the vector.
    pub x: f32,
    /// The Y component of the vector.
    pub y: f32,
}

/// Represents a cartesian point in the 2D euclidean plane.
#[repr(C)]
#[derive(Clone, Copy, Default, PartialEq, Debug)]
pub struct Point {
    /// The X coordinate of the point.
    pub x: f32,
    /// The Y coordinate of the point.
    pub y: f32,
}

impl Vector {
    /// Constructs a new vector.
    #[inline]
    pub fn new(x: f32, y: f32) -> Vector {
        Vector { x: x, y: y }
    }

    /// Constructs a unit-length vector with a certain angle in radians.
    #[inline]
    pub fn unit_from_radians(angle: f32) -> Vector {
        let (sin, cos) = angle.sin_cos();
        Vector { x: cos, y: sin }
    }

    /// Constructs a unit-length vector with a certain angle in degrees.
    #[inline]
    pub fn unit_from_degrees(angle: f32) -> Vector {
        let (sin, cos) = angle.to_radians().sin_cos();
        Vector { x: cos, y: sin }
    }

    /// Constructs a vector of a certain magnitude and angle (in radians).
    #[inline]
    pub fn new_polar_rad(radius: f32, angle: f32) -> Vector {
        let (sin, cos) = angle.sin_cos();
        Vector {
            x: cos * radius,
            y: sin * radius,
        }
    }

    /// Constructs a vector of a certain magnitude and angle (in degrees).
    #[inline]
    pub fn new_polar_deg(radius: f32, angle: f32) -> Vector {
        Vector::new_polar_rad(radius, angle.to_radians())
    }

    /// Computes the magnitude/length of a vector.
    #[inline]
    pub fn magnitude(self) -> f32 {
        self.x.hypot(self.y)
    }

    /// Computes the dot product of two vectors.
    #[inline]
    pub fn dot(self, other: Vector) -> f32 {
        self.x.mul_add(other.x, self.y * other.y)
    }

    /// Computes the component-wise product of two vectors.
    #[inline]
    pub fn scale(self, other: Vector) -> Vector {
        Vector {
            x: self.x * other.x,
            y: self.y * other.y,
        }
    }

    /// Computes the component-wise product of two vectors,
    /// assigning the result to the first one.
    #[inline]
    pub fn scale_mut(&mut self, other: Vector) {
        self.x *= other.x;
        self.y *= other.y;
    }

    /// Rotates a vector by a `Rotation` struct.
    #[inline]
    pub fn rotate(self, rotation: Rotation) -> Vector {
        Vector {
            x: self.x * rotation.cos - self.y * rotation.sin,
            y: self.x * rotation.sin + self.y * rotation.cos,
        }
    }
     
    /// Rotates a vector, mutating it.
    #[inline]
    pub fn rotate_mut(&mut self, rotation: Rotation) {
        *self = self.rotate(rotation);
    }

    /// Rotates a vector by an angle in radians.
    #[inline]
    pub fn rotate_rad(self, angle: f32) -> Vector {
        self.rotate(Rotation::new_rad(angle))
    }

    /// Rotates a vector by an angle in radians, mutating it.
    #[inline]
    pub fn rotate_rad_mut(&mut self, angle: f32) {
        *self = self.rotate_rad(angle);
    }

    /// Rotates a vector by an angle in degrees.
    #[inline]
    pub fn rotate_deg(self, angle: f32) -> Vector {
        self.rotate(Rotation::new_deg(angle))
    }

    /// Rotates a vector by an angle in degrees, mutating it.
    #[inline]
    pub fn rotate_deg_mut(&mut self, angle: f32) {
        *self = self.rotate_deg(angle);
    }

    /// Normalizes a vector to unit length.
    ///
    /// If the vector is zero, returns (1, 0).
    #[inline]
    pub fn normalize(self) -> Vector {
        if self == VEC_ZERO {
            VEC_RIGHT
        } else {
            self * self.magnitude().recip()
        }
    }

    /// Sets a vector to unit length.
    ///
    /// If the vector is zero, sets to (1, 0).
    #[inline]
    pub fn normalize_mut(&mut self) {
        if *self == VEC_ZERO {
            *self = VEC_RIGHT
        } else {
            *self *= self.magnitude().recip()
        }
    }

    /// Computes the euclidean distance between two vectors.
    #[inline]
    pub fn dist(self, other: Vector) -> f32 {
        (self - other).magnitude()
    }

    /// Computes the grid-based distance between two vectors.
    ///
    /// This is the length of the shortest path between the vectors,
    /// if the only movement allowed is parallel to the x- or y-axis.
    #[inline]
    pub fn grid_dist(self, other: Vector) -> f32 {
        (self.x - other.x).abs() + (self.y - other.y).abs()
    }

    /// Computes the angle between a vector and the positive x-axis, in radians.
    ///
    /// Return values are contained in (-τ/2, τ/2], aka. (-π, π].
    #[inline]
    pub fn angle_rad(self) -> f32 {
        self.y.atan2(self.x)
    }

    /// Computes the angle between a vector and the positive x-axis, in degrees.
    ///
    /// Return values are approximately contained in (-180, 180].
    #[inline]
    pub fn angle_deg(self) -> f32 {
        self.angle_rad().to_degrees()
    }

    /// Computes the angle between two vectors, in radians.
    ///
    /// Rotating the first vector by the resulting angle will give it
    /// the same angle as the second.
    ///
    /// Return values are contained in (-τ/2, τ/2], aka (-π, π].
    #[inline]
    pub fn angle_between_rad(self, other: Vector) -> f32 {
        let x = self.x * other.x + self.y * other.y;
        let y = self.x * other.y - self.y * other.x;
        y.atan2(x)
    }

    /// Computes the angle between two vectors, in degrees.
    ///
    /// Return values are approximately contained in (-180, 180].
    #[inline]
    pub fn angle_between_deg(self, other: Vector) -> f32 {
        self.angle_between_rad(other).to_degrees()
    }

    /// Calls a function on each component of a vector,
    /// returning the result as a new vector.
    #[inline]
    pub fn map<F: Fn(f32) -> f32>(self, func: &F) -> Vector {
        Vector {
            x: func(self.x),
            y: func(self.y),
        }
    }

    /// Sets each component to the result of calling a function
    /// on the component's value.
    #[inline]
    pub fn map_mut<F: Fn(f32) -> f32>(&mut self, func: &F) {
        self.x = func(self.x);
        self.y = func(self.y);
    }

    /// Linearly interpolates from one vector to another by `t`.
    ///
    /// `t` < 0 or `t` > 1 gives results outside the
    /// rectangular bounds of the vectors.
    #[inline]
    pub fn lerp(self, other: Vector, t: f32) -> Vector {
        self + (other - self) * t
    }

    /// Returns `true` if `self` is within the (inclusive) bounds
    /// of the rectangle defined by two vertices.
    #[inline]
    pub fn is_in_rect(self, vert1: Vector, vert2: Vector) -> bool {
        let min_x = vert1.x.min(vert2.x);
        let max_x = vert1.x.max(vert2.x);
        let min_y = vert1.y.min(vert2.y);
        let max_y = vert1.y.max(vert2.y);

        self.x >= min_x && self.x <= max_x &&
        self.y >= min_y && self.y <= max_y
    }

    /// Clamps a vector to within the (inclusive) bounds of the rectangle
    /// defined by two vertices.
    #[inline]
    pub fn clamp_to_rect(self, vert1: Vector, vert2: Vector) -> Vector {
        Vector {
            x: num::clamp(self.x, vert1.x, vert2.x),
            y: num::clamp(self.y, vert1.y, vert2.y),
        }
    }

    /// Reinterprets the x- and y-components of a vector as a point.
    #[inline]
    pub fn as_point(self) -> Point {
        Point::new(self.x, self.y)
    }

    /// Converts a OpenGL-style `vec2` to a `Vector`.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    #[inline]
    pub fn from_vec2(vec2: [f32; 2]) -> Vector {
        Vector::new(vec2[0], vec2[1])
    }

    /// Converts a `Vector` to a OpenGL-style `vec2`.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    #[inline]
    pub fn to_vec2(self) -> [f32; 2] {
        [self.x, self.y]
    }

    /// Converts a `Vector` to a OpenGL-style `vec3`.
    ///
    /// The result is padded to `[x, y, 0]`.
    #[inline]
    pub fn to_vec3(self) -> [f32; 3] {
        [self.x, self.y, 0.0]
    }

    /// Converts a `Vector` to a OpenGL-style `vec4`.
    ///
    /// The result is padded to `[x, y, 0, 0]`.
    #[inline]
    pub fn to_vec4(self) -> [f32; 4] {
        [self.x, self.y, 0.0, 0.0]
    }

    /// Reinterprets a slice of `vec2`s as `Vector`s.
    ///
    /// Does not allocate a new array, only changes the type of the pointer.
    #[inline]
    pub fn arr_from_vec2s(arr: &[[f32; 2]]) -> &[Vector] {
        unsafe { mem::transmute(arr) }
    }

    /// Reinterprets a slice of `Vector`s as `vec2`s.
    ///
    /// Does not allocate a new array, only changes the type of the pointer.
    #[inline]
    pub fn arr_to_vec2s(arr: &[Vector]) -> &[[f32; 2]] {
        unsafe { mem::transmute(arr) }
    }
}

impl Point {
    /// Constructs a new point from x- and y-components.
    #[inline]
    pub fn new(x: f32, y: f32) -> Point {
        Point { x: x, y: y }
    }

    /// Constructs a new point from polar coordinates.
    ///
    /// The angle is given in radians.
    #[inline]
    pub fn new_polar_rad(radius: f32, angle: f32) -> Point {
        let (sin, cos) = angle.sin_cos();
        Point::new(radius * cos, radius * sin)
    }

    /// Constructs a new point from polar coordinates.
    ///
    /// The angle is given in degrees.
    #[inline]
    pub fn new_polar_deg(radius: f32, angle: f32) -> Point {
        Point::new_polar_rad(radius, angle.to_radians())
    }

    /// Computes the euclidean distance between two points.
    #[inline]
    pub fn dist(self, other: Point) -> f32 {
        (self - other).magnitude()
    }

    /// Rotates a point around a pivot point.
    #[inline]
    pub fn rotate(self, pivot: Point, rotation: Rotation) -> Point {
        (self - pivot).rotate(rotation) + pivot
    }

    /// Rotates a point `angle` radians counter-clockwise around a pivot point.
    #[inline]
    pub fn rotate_rad(self, pivot: Point, angle: f32) -> Point {
        self.rotate(pivot, Rotation::new_rad(angle))
    }

    /// Rotates a point `angle` degrees counter-clockwise around a pivot point.
    #[inline]
    pub fn rotate_deg(self, pivot: Point, angle: f32) -> Point {
        self.rotate_rad(pivot, angle.to_radians())
    }

    /// Linearly interpolates from one point to another by `t`.
    ///
    /// `t` < 0 or `t` > 1 gives results outside the
    /// rectangular bounds of the points.
    #[inline]
    pub fn lerp(self, other: Point, t: f32) -> Point {
        self + (other - self) * t
    }

    /// Returns `true` if `self` is within the (inclusive) bounds
    /// of the rectangle defined by two points.
    #[inline]
    pub fn is_in_rect(self, vert1: Point, vert2: Point) -> bool {
        let min_x = vert1.x.min(vert2.x);
        let max_x = vert1.x.max(vert2.x);
        let min_y = vert1.y.min(vert2.y);
        let max_y = vert1.y.max(vert2.y);

        self.x >= min_x && self.x <= max_x &&
        self.y >= min_y && self.y <= max_y
    }

    /// Clamps a vector to within the (inclusive) bounds of the rectangle
    /// defined by two points.
    #[inline]
    pub fn clamp_to_rect(self, vert1: Point, vert2: Point) -> Point {
        Point {
            x: num::clamp(self.x, vert1.x, vert2.x),
            y: num::clamp(self.y, vert1.y, vert2.y),
        }
    }

    /// Reinterprets the x- and y-components of a point as a vector.
    #[inline]
    pub fn as_vec(self) -> Vector {
        Vector::new(self.x, self.y)
    }

    /// Changes the type of a OpenGL-style `vec2` array to a `Point`.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    /// Useful mostly for interop with other libraries, like OpenGL wrappers.
    #[inline]
    pub fn from_gl_vec2(vec2: [f32; 2]) -> Point {
        Point::new(vec2[0], vec2[1])
    }

    /// Changes the type of a `Point` to a OpenGL-style `vec2` array.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    /// Useful mostly for interop with other libraries, like OpenGL wrappers.
    #[inline]
    pub fn to_gl_vec2(self) -> [f32; 2] {
        [self.x, self.y]
    }

    /// Converts a OpenGL-style `vec2` to a `Point`.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    #[inline]
    pub fn from_vec2(vec2: [f32; 2]) -> Point {
        Point::new(vec2[0], vec2[1])
    }

    /// Converts a `Point` to a OpenGL-style `vec2`.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    #[inline]
    pub fn to_vec2(self) -> [f32; 2] {
        [self.x, self.y]
    }

    /// Converts a `Point` to a OpenGL-style `vec3`.
    ///
    /// The result is padded to `[x, y, 0]`.
    #[inline]
    pub fn to_vec3(self) -> [f32; 3] {
        [self.x, self.y, 0.0]
    }

    /// Converts a `Point` to a OpenGL-style `vec4`.
    ///
    /// The result is padded to `[x, y, 0, 1]`.
    #[inline]
    pub fn to_vec4(self) -> [f32; 4] {
        [self.x, self.y, 0.0, 1.0]
    }

    /// Reinterprets a slice of `vec2`s as `Point`s.
    ///
    /// Does not allocate a new array, only changes the type of the pointer.
    #[inline]
    pub fn arr_from_vec2s(arr: &[[f32; 2]]) -> &[Point] {
        unsafe { mem::transmute(arr) }
    }

    /// Reinterprets a slice of `Point`s as `vec2`s.
    ///
    /// Does not allocate a new array, only changes the type of the pointer.
    #[inline]
    pub fn arr_to_vec2s(arr: &[Point]) -> &[[f32; 2]] {
        unsafe { mem::transmute(arr) }
    }
}

/// Represents a 2D rotation or direction.
///
/// Stores the sine and cosine of the angle of rotation, which makes
/// the rotation faster if the same angle is used multiple times.
/// The drawbacks are memory usage, and that 
/// combining multiple rotations is more expensive.
#[repr(C)]
#[derive(Clone, Copy, PartialEq)]
pub struct Rotation {
    /// The cosine of the angle.
    pub cos: f32,
    /// The sine of the angle.
    pub sin: f32,
}

impl Rotation {
    /// Constructs a rotation from the direction of a vector.
    ///
    /// The angle of the rotation is the angle from the positive
    /// x-axis to the vector.
    #[inline]
    pub fn new_in_direction(dir: Vector) -> Rotation {
        let normalized = dir.normalize();
        Rotation {
            cos: normalized.x,
            sin: normalized.y,
        }
    }

    /// Constructs a rotation of a specified angle, in radians.
    #[inline]
    pub fn new_rad(angle: f32) -> Rotation {
        let (sin, cos) = angle.sin_cos();
        Rotation {
            cos: cos,
            sin: sin,
        }
    }

    /// Constructs a rotation of a specified angle, in degrees.
    #[inline]
    pub fn new_deg(angle: f32) -> Rotation {
        Rotation::new_rad(angle.to_radians())
    }

    /// Gets the rotation from one vector to another.
    ///
    /// Rotating the first vector by the returned rotation yields
    /// a vector with the same direction as the second vector.
    #[inline]
    pub fn between(from: Vector, to: Vector) -> Rotation {
        Rotation::new_in_direction(Vector {
            x: from.x * to.x + from.y * to.y,
            y: from.x * to.y - from.y * to.x,
        })
    }

    /// Negates the angle of a rotation.
    #[inline]
    pub fn negate(self) -> Rotation {
        // Simply uses that: cos -x = cos x, sin -x = -sin x
        Rotation {
            cos: self.cos,
            sin: -self.sin,
        }
    }

    /// Adds the angles of two rotations together.
    #[inline]
    pub fn add(self, other: Rotation) -> Rotation {
        // Equivalent to complex multiplication where `cos`
        // is the real component and `sin` is the imaginary.
        Rotation {
            cos: self.cos * other.cos - self.sin * other.sin,
            sin: self.sin * other.cos + self.cos * other.sin,
        }
    }

    /// Subtracts the angle of one rotation from another.
    ///
    /// Equivalent to `self.add(other.negate())`.
    #[inline]
    pub fn sub(self, other: Rotation) -> Rotation {
        // Equivalent to `add()` but with the sign of `other.sin` reversed.
        // Uses that cos -x = cos x, sin -x = -sin x.
        Rotation {
            cos: self.cos * other.cos + self.sin * other.sin,
            sin: self.sin * other.cos - self.cos * other.sin,
        }
    }

    /// Returns the angle of rotation, in radians.
    ///
    /// Return values are contained in (-τ/2, τ/2], aka. (-π, π].
    #[inline]
    pub fn angle_rad(self) -> f32 {
        self.sin.atan2(self.cos)
    }

    /// Returns the angle of rotation, in degrees.
    ///
    /// Return values are approximately contained in (-180, 180].
    #[inline]
    pub fn angle_deg(self) -> f32 {
        self.angle_rad().to_degrees()
    }

    /// Converts the rotation to a unit vector.
    #[inline]
    pub fn to_vector(self) -> Vector {
        Vector::new(self.cos, self.sin)
    }

    /// Linearly interpolates the angle between two rotations.
    ///
    /// The angle moves between the endpoints at contant speed.
    /// Like the other lerp functions, works even for t outside [0, 1].
    /// Fairly slow, like the analogous common quaternion `slerp` function.
    #[inline]
    pub fn slerp(self, other: Rotation, t: f32) -> Rotation {
        let diff_angle = other.sub(self).angle_rad();
        let r3 = Rotation::new_rad(diff_angle*t);
        self.add(r3)
    }

    /// Quickly interpolates between two rotations.
    ///
    /// Significantly faster than slerp, but doesn't have constant angle speed.
    /// This gets jerkier the further the two rotations are from eachother.
    ///
    /// Treats the rotations as direction vectors, linearly interpolates
    /// between them, and normalizes the result to a new direction vector,
    /// which is used as the new rotation.
    #[inline]
    pub fn nlerp(self, other: Rotation, t: f32) -> Rotation {
        let raw_x = num::lerp(self.cos, other.cos, t);
        let raw_y = num::lerp(self.sin, other.sin, t);
        if (raw_x, raw_y) == (0.0, 0.0) {
            // Would result in division by zero
            self
        }
        else {
            // Normalize vector (raw_x, raw_y)
            let inv_magnitude = (raw_x*raw_x + raw_y*raw_y).sqrt().recip();
            Rotation {
                cos: raw_x * inv_magnitude,
                sin: raw_y * inv_magnitude,
            }
        }
    }
}

impl fmt::Debug for Rotation {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f,
               "Rotation(angle: {} degrees, cos: {}, sin: {})",
               self.angle_deg(),
               self.cos,
               self.sin)
    }
}

/// Represents an affine transformation of the plane.
///
/// Can represent any linear transformation, plus translation.
/// Equivalent in layout to a GLSL (column-major) 3x2 matrix,
/// where the rightmost column contains the translation vector.
#[derive(Clone, Copy, PartialEq)]
pub struct Transform {
    /// The 2x2 linear transformation matrix.
    ///
    /// Stored in column-major order as a 2D array.
    pub mat: [[f32; 2]; 2],
    /// The translation vector.
    pub vec: Vector,
}

impl Transform {
    /// Constructs a new `Transform` from translation, rotation and scale.
    #[inline]
    pub fn new(translation: Vector, rotation: Rotation, scale: Vector) -> Transform {
        Transform {
            vec: translation,
            mat: [
                [scale.x * rotation.cos,
                 scale.x * rotation.sin],
                [scale.y * -rotation.sin,
                 scale.y * rotation.cos],
            ],
        }
    }

    /// Constructs a new `Transform` from position, rotation and scale.
    ///
    /// Rotation is given as an angle in radians.
    #[inline]
    pub fn new_rad(translation: Vector, angle: f32, scale: Vector) -> Transform {
        Transform::new(translation, Rotation::new_rad(angle), scale)
    }

    /// Constructs a new `Transform` from position, rotation and scale.
    ///
    /// Rotation is given as an angle in degrees.
    #[inline]
    pub fn new_deg(translation: Vector, angle: f32, scale: Vector) -> Transform {
        Transform::new(translation, Rotation::new_deg(angle), scale)
    }

    /// Constructs a `Transform` from a 2x2 linear tranformation matrix.
    ///
    /// The order of the arguments is their order in memory - column-major.
    #[inline]
    pub fn new_matrix(mat1_1: f32, mat2_1: f32, mat1_2: f32, mat2_2: f32) -> Transform {
        Transform {
            vec: VEC_ZERO,
            mat: [[mat1_1, mat2_1],
                  [mat1_2, mat2_2]],
        }
    }

    /// Constructs a scaling `Transform`.
    #[inline]
    pub fn new_scaling(scale: Vector) -> Transform {
        Transform::new_matrix(scale.x, 0.0, 0.0, scale.y)
    }

    /// Constructs a rotating `Transform` from a `Rotation`.
    #[inline]
    pub fn new_rotation(rotation: Rotation) -> Transform {
        Transform::new_matrix(rotation.cos, -rotation.sin, rotation.sin, rotation.cos)
    }

    /// Constructs a rotating `Transform` from an angle in radians.
    #[inline]
    pub fn new_rotation_rad(angle: f32) -> Transform {
        Transform::new_rotation(Rotation::new_rad(angle))
    }

    /// Constructs a rotating `Transform` from an angle in degrees.
    #[inline]
    pub fn new_rotation_deg(angle: f32) -> Transform {
        Transform::new_rotation(Rotation::new_deg(angle))
    }

    /// Constructs a translating `Transform` from an offset.
    #[inline]
    pub fn new_translation(offset: Vector) -> Transform {
        Transform {
            vec: offset,
            mat: TRANSFORM_IDENTITY.mat,
        }
    }

    /// Creates a new `Transform` by translating an existing one.
    ///
    /// The offset is relative to the global coordinate system.
    #[inline]
    pub fn translate(self, offset: Vector) -> Transform {
        Transform { vec: self.vec + offset, ..self }
    }

    /// Translates a `Transform`, mutating it.
    ///
    /// The offset is relative to the global coordinate system.
    #[inline]
    pub fn translate_mut(&mut self, offset: Vector) {
        self.vec += offset;
    }

    /// Creates a new `Transform` by translating an existing one.
    ///
    /// The offset is relative to the local coordinate system defined
    /// by the `Transform`.
    #[inline]
    pub fn translate_local(self, offset: Vector) -> Transform {
        Transform { vec: self.vec + self.transform(offset), ..self }
    }

    /// Translates a `Transform`, mutating it.
    ///
    /// The offset is relative to the local coordinate system defined
    /// by the `Transform`.
    #[inline]
    pub fn translate_local_mut(&mut self, offset: Vector) {
        self.vec += self.transform(offset);
    }

    /// Creates a new `Transform` by rotating an existing one.
    #[inline]
    pub fn rotate(self, rotation: Rotation) -> Transform {
        Transform {
            mat: [
                [self.mat[0][0] * rotation.cos + self.mat[1][0] * rotation.sin,
                 self.mat[0][1] * rotation.cos + self.mat[1][1] * rotation.sin],
                [self.mat[1][0] * rotation.cos - self.mat[0][0] * rotation.sin,
                 self.mat[1][1] * rotation.cos - self.mat[0][1] * rotation.sin],
            ],
            ..self
        }
    }

    /// Creates a new `Transform` by rotating an existing one
    /// by an angle in radians.
    #[inline]
    pub fn rotate_rad(self, angle: f32) -> Transform {
        self.rotate(Rotation::new_rad(angle))
    }

    /// Creates a new `Transform` by rotating an existing one
    /// by an angle in degrees.
    #[inline]
    pub fn rotate_deg(self, angle: f32) -> Transform {
        self.rotate(Rotation::new_deg(angle))
    }

    /// Rotates a `Transform`, mutating it.
    #[inline]
    pub fn rotate_mut(&mut self, rotation: Rotation) {
        *self = self.rotate(rotation);
    }

    /// Rotates a `Transform` by an angle in radians, mutating it.
    #[inline]
    pub fn rotate_rad_mut(&mut self, angle: f32) {
        self.rotate_mut(Rotation::new_rad(angle));
    }

    /// Rotates a `Transform` by an angle in degrees, mutating it.
    #[inline]
    pub fn rotate_deg_mut(&mut self, angle: f32) {
        self.rotate_mut(Rotation::new_deg(angle));
    }

    /// Creates a new `Transform` by scaling an existing one.
    #[inline]
    pub fn scale(self, factor: Vector) -> Transform {
        Transform {
            mat: [
                [self.mat[0][0] * factor.x, self.mat[0][1] * factor.x],
                [self.mat[1][0] * factor.y, self.mat[1][1] * factor.y],
            ],
            ..self
        }
    }

    /// Creates a new `Transform` by scaling an existing one.
    ///
    /// Scales by the same amount in both axes.
    #[inline]
    pub fn scale_by_num(self, factor: f32) -> Transform {
        Transform {
            mat: [
                [self.mat[0][0] * factor, self.mat[0][1] * factor],
                [self.mat[1][0] * factor, self.mat[1][1] * factor],
            ],
            ..self
        }
    }

    /// Scales a `Transform`, mutating it.
    #[inline]
    pub fn scale_mut(&mut self, factor: Vector) {
        self.mat[0][0] *= factor.x;
        self.mat[0][1] *= factor.x;
        self.mat[1][0] *= factor.y;
        self.mat[1][1] *= factor.y;
    }

    /// Scales a `Transform` equally in both axes, mutating it.
    #[inline]
    pub fn scale_by_num_mut(&mut self, factor: f32) {
        self.mat[0][0] *= factor;
        self.mat[0][1] *= factor;
        self.mat[1][0] *= factor;
        self.mat[1][1] *= factor;
    }

    /// Transforms a list of transformable items into a new `Vec`.
    #[inline]
    pub fn transform_arr<T>(self, arr: &[T]) -> Vec<T> where
        Self: Transformation<T>, T: Copy 
    {
        arr.iter().map(|el| self.transform(*el)).collect()
    }

    /// Transforms a list of transformable items, mutating them.
    #[inline]
    pub fn transform_arr_mut<T>(self, arr: &mut [T]) where
        Self: Transformation<T>, T: Copy 
    {
        for el in arr {
            self.transform_mut(el);
        }
    }

    /// Converts a OpenGL-style `mat3x2` to a `Transform`.
    ///
    /// Optimizes into a simple copy, since the types have the same layout.
    #[inline]
    pub fn from_mat3x2(mat3x2: [[f32; 2]; 3]) -> Transform {
        Transform {
            mat: [mat3x2[0], mat3x2[1]],
            vec: Vector::new(mat3x2[2][0], mat3x2[2][1]),
        }
    }

    /// Converts a `Transform` to a OpenGL-style `mat3x2`.
    ///
    /// 
    /// Optimizes into a simple copy, since the types have the same layout.
    #[inline]
    pub fn to_mat3x2(self) -> [[f32; 2]; 3] {
        [
            self.mat[0],
            self.mat[1],
            [self.vec.x, self.vec.y],
        ]
    }

    /// Converts a `Transform` to a OpenGL-style `mat4x4`.
    ///
    /// The matrix is inserted in the top-left corner, and
    /// the translation vector in the top of the rightmost column.
    /// The rest of the elements are set to the identity matrix.
    #[inline]
    pub fn to_mat4x4(self) -> [[f32; 4]; 4] {
        [
            [self.mat[0][0], self.mat[0][1], 0.0, 0.0],
            [self.mat[1][0], self.mat[1][1], 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0],
            [self.vec.x, self.vec.y, 0.0, 1.0],
        ]
    }

    /// Reinterprets a slice of OpenGL-style `mat4x4`s as `Transform`s.
    ///
    /// Does not allocate a new array, only changes the type of the pointer.
    #[inline]
    pub fn arr_from_mat3x2s(arr: &[[[f32; 4]; 4]]) -> &[Transform] {
        unsafe { mem::transmute(arr) }
    }

    /// Reinterprets a slice of `Transform`s as OpenGL-style `mat4x4`s.
    ///
    /// Does not allocate a new array, only changes the type of the pointer.
    #[inline]
    pub fn arr_to_mat3x2s(arr: &[Transform]) -> &[[[f32; 4]; 4]] {
        unsafe { mem::transmute(arr) }
    }
}

impl fmt::Debug for Transform {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f,
            "Transform:\n[{}, {}]\n[{}, {}],\n{:?}",
            self.mat[0][0], self.mat[1][0],
            self.mat[0][1], self.mat[1][1],
            self.vec)
    }
}

/// A trait for possibly-invertible transformation.
///
/// The inversion is analogous to 1/x, in that it might
/// sometimes fail numerically. For example, scaling the
/// plane by zero can't be reversed, since information is lost.
/// 
/// An implementation of this is required for implementing `Transformation`.
pub trait MaybeInvertible: Sized + Copy {
    /// Returns `true` if the object is invertible, `false` otherwise.
    fn is_invertible(self) -> bool;

    /// Returns the inverse of an object.
    ///
    /// This method must not panic, even if the object can't be
    /// reasonably inverted.
    fn invert(self) -> Self;

    /// Inverts an object, mutating it.
    #[inline]
    fn invert_mut(&mut self) {
        *self = self.invert();
    }

    /// Attempts to compute the inverse of a transformation.
    ///
    /// Returns `Some(inverse)` if the transformation is invertible,
    /// returns `None` otherwise.
    #[inline]
    fn invert_checked(self) -> Option<Self> {
        if self.is_invertible() {
            Some(self.invert()) 
        } else { 
            None 
        }
    }
}

impl MaybeInvertible for Transform {
    #[inline]
    fn is_invertible(self) -> bool {
        // Returns whether the determinant of the matrix is zero
        self.mat[0][0] * self.mat[1][1] != self.mat[0][1] * self.mat[1][0]
    }

    #[inline]
    fn invert(self) -> Self {
        let inv_det = (
            self.mat[0][0] * self.mat[1][1] - self.mat[0][1] * self.mat[1][0]
            ).recip();
        
        Transform {
            mat: [
                [self.mat[1][1] * inv_det, -self.mat[0][1] * inv_det],
                [-self.mat[1][0] * inv_det, self.mat[0][0] * inv_det],
            ],
            vec: inv_det * Vector {
                x: self.mat[0][1] * self.vec.y - self.mat[1][1] * self.vec.x,
                y: self.mat[1][0] * self.vec.x - self.mat[0][0] * self.vec.y,
            },
        }
    }
}

/// A trait describing the transformation of some type `T`.
pub trait Transformation<T>: MaybeInvertible {
    /// Returns a transformed copy of an object.
    ///
    /// Implementors only need to implement this function,
    /// as the other have default implementations based on this.
    fn transform(self, operand: T) -> T;

    /// Transforms an object, mutating it.
    #[inline]
    fn transform_mut(self, operand: &mut T) where T: Copy {
        *operand = self.transform(*operand);
    }

    /// Transforms an object by the inverse of a transformation.
    ///
    /// Should not panic even if the transformation isn't invertible.
    #[inline]
    fn inverse_transform(self, operand: T) -> T {
        self.invert().transform(operand)
    }

    /// Transforms an object by the inverse of a transformation.
    ///
    /// Returns `Some(result)` if the transformation is invertible,
    /// returns `None` otherwise.
    #[inline]
    fn inverse_transform_checked(self, operand: T) -> Option<T> {
        if self.is_invertible() {
            Some(self.inverse_transform(operand))
        }
        else { None }
    }
}

impl Transformation<Vector> for Transform {
    #[inline]
    fn transform(self, vec: Vector) -> Vector {
        Vector {
            x: self.mat[0][0] * vec.x + self.mat[1][0] * vec.y,
            y: self.mat[0][1] * vec.x + self.mat[1][1] * vec.y,
        }
    }

    #[inline]
    fn inverse_transform(self, vec: Vector) -> Vector {
        let inv_det = (
            self.mat[0][0] * self.mat[1][1] - self.mat[0][1] * self.mat[1][0]
        ).recip();

        Vector {
            x: inv_det * (self.mat[1][1] * vec.x - self.mat[1][0] * vec.y),
            y: inv_det * (self.mat[0][0] * vec.y - self.mat[0][1] * vec.x),
        }
    }
}

impl Transformation<Point> for Transform {
    #[inline]
    fn transform(self, pt: Point) -> Point {
        (self.transform(pt.as_vec()) + self.vec).as_point()
    }

    #[inline]
    fn inverse_transform(self, pt: Point) -> Point {
        self.inverse_transform(pt.as_vec() - self.vec).as_point()
    }
}

impl Transformation<Transform> for Transform {
    #[inline]
    fn transform(self, rhs: Transform) -> Transform {
        Transform {
            mat: [[self.mat[0][0] * rhs.mat[0][0] + self.mat[1][0] * rhs.mat[0][1],
                   self.mat[0][1] * rhs.mat[0][0] + self.mat[1][1] * rhs.mat[0][1]],
                  [self.mat[0][0] * rhs.mat[1][0] + self.mat[1][0] * rhs.mat[1][1],
                   self.mat[0][1] * rhs.mat[1][0] + self.mat[1][1] * rhs.mat[1][1]]],
            vec: self.vec + self.transform(rhs.vec),
        }
    }
}

// --OPERATOR IMPLS-- \\
// in short, implements
// vector + vector = vector
// point  + vector = point
// vector + point  = point
// vector - vector = vector
// point  - vector = point
// point  - point  = vector
// vector += vector
// point  += vector
// vector -= vector
// point  -= vector
// vector * f32 = vector
// vector / f32 = vector
// vector *= f32
// vector /= f32
// -vector = vector

macro_rules! impl_elementwise {
    ($lhs:ty, $rhs:ty, $res:ident, $trai:ident, $fun:ident) => (
        impl $trai<$rhs> for $lhs {
            type Output = $res;
            #[inline]
            fn $fun(self, other: $rhs) -> $res {
                $res {
                    x: self.x.$fun(other.x),
                    y: self.y.$fun(other.y),
                }
            }
        }
    )
}

impl_elementwise!(Vector, Vector, Vector, Add, add);
impl_elementwise!(Point,  Vector, Point,  Add, add);
impl_elementwise!(Vector, Point,  Point,  Add, add);

impl_elementwise!(Vector, Vector, Vector, Sub, sub);
impl_elementwise!(Point,  Vector, Point,  Sub, sub);
impl_elementwise!(Point,  Point,  Vector, Sub, sub);

macro_rules! impl_elwise_assign {
    ($lhs:ty, $rhs:ty, $trai:ident, $fun:ident) => (
        impl $trai<$rhs> for $lhs {
            #[inline]
            fn $fun(&mut self, other: $rhs) {
                self.x.$fun(other.x);
                self.y.$fun(other.y);
            }
        }
    )
}

impl_elwise_assign!(Vector, Vector, AddAssign, add_assign);
impl_elwise_assign!(Point,  Vector, AddAssign, add_assign);
impl_elwise_assign!(Vector, Vector, SubAssign, sub_assign);
impl_elwise_assign!(Point,  Vector, SubAssign, sub_assign);

// v1 * s = v2
impl Mul<f32> for Vector {
    type Output = Vector;
    #[inline]
    fn mul(self, scalar: f32) -> Vector {
        Vector {
            x: self.x * scalar,
            y: self.y * scalar,
        }
    }
}

// s * v1 = v2
impl Mul<Vector> for f32 {
    type Output = Vector;
    #[inline]
    fn mul(self, vec: Vector) -> Vector {
        Vector {
            x: vec.x * self,
            y: vec.y * self,
        }
    }
}

// v1 *= s
impl MulAssign<f32> for Vector {
    #[inline]
    fn mul_assign(&mut self, scalar: f32) {
        self.x *= scalar;
        self.y *= scalar;
    }
}

// v1 / s = v2
impl Div<f32> for Vector {
    type Output = Vector;
    #[inline]
    fn div(self, scalar: f32) -> Vector {
        Vector {
            x: self.x / scalar,
            y: self.y / scalar,
        }
    }
}

// v1 /= s
impl DivAssign<f32> for Vector {
    #[inline]
    fn div_assign(&mut self, scalar: f32) {
        self.x /= scalar;
        self.y /= scalar;
    }
}

// -v1 = v2
impl Neg for Vector {
    type Output = Vector;
    #[inline]
    fn neg(self) -> Vector {
        Vector {
            x: -self.x,
            y: -self.y,
        }
    }
}