1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
use crate::error::Error;
use cranelift_codegen::{isa, settings::Configurable};
use lucet_module::ModuleFeatures;
use std::collections::{HashMap, HashSet};
use target_lexicon::Triple;

use raw_cpuid::CpuId;

/// x86 CPU families used as shorthand for different CPU feature configurations.
///
/// Matches the definitions from `cranelift-codegen`'s x86 settings definition.
#[derive(Debug, Clone, Copy)]
pub enum TargetCpu {
    Native,
    Baseline,
    Nehalem,
    Sandybridge,
    Haswell,
    Broadwell,
    Skylake,
    Cannonlake,
    Icelake,
    Znver1,
}

impl TargetCpu {
    fn features(&self) -> Vec<SpecificFeature> {
        use SpecificFeature::*;
        use TargetCpu::*;
        match self {
            Native | Baseline => vec![],
            Nehalem => vec![SSE3, SSSE3, SSE41, SSE42, Popcnt],
            // Note: this is not part of the Cranelift profile for Haswell, and there is no Sandy
            // Bridge profile. Instead, Cranelift only uses CPUID detection to enable AVX. If we
            // want to bypass CPUID when compiling, we need to set AVX manually, and Sandy Bridge is
            // the first family of Intel CPUs with AVX.
            Sandybridge => [Nehalem.features().as_slice(), &[AVX]].concat(),
            Haswell => [Sandybridge.features().as_slice(), &[BMI1, BMI2, Lzcnt]].concat(),
            Broadwell => Haswell.features(),
            Skylake => Broadwell.features(),
            Cannonlake => Skylake.features(),
            Icelake => Cannonlake.features(),
            Znver1 => vec![SSE3, SSSE3, SSE41, SSE42, Popcnt, AVX, BMI1, BMI2, Lzcnt],
        }
    }
}

/// Individual CPU features that may be used during codegen.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum SpecificFeature {
    SSE3,
    SSSE3,
    SSE41,
    SSE42,
    Popcnt,
    AVX,
    BMI1,
    BMI2,
    Lzcnt,
}

/// An x86-specific configuration of CPU features that affect code generation.
#[derive(Debug, Clone)]
pub struct CpuFeatures {
    /// Base CPU profile to use
    cpu: TargetCpu,
    /// Specific CPU features to add or remove from the profile
    specific_features: HashMap<SpecificFeature, bool>,
}

fn detect_features(features: &mut ModuleFeatures) {
    let cpuid = CpuId::new();

    if let Some(info) = cpuid.get_feature_info() {
        features.sse3 = info.has_sse3();
        features.ssse3 = info.has_ssse3();
        features.sse41 = info.has_sse41();
        features.sse42 = info.has_sse42();
        features.avx = info.has_avx();
        features.popcnt = info.has_popcnt();
    }

    if let Some(info) = cpuid.get_extended_feature_info() {
        features.bmi1 = info.has_bmi1();
        features.bmi2 = info.has_bmi2();
    }

    if let Some(info) = cpuid.get_extended_function_info() {
        features.lzcnt = info.has_lzcnt();
    }
}

impl From<&CpuFeatures> for ModuleFeatures {
    fn from(cpu_features: &CpuFeatures) -> ModuleFeatures {
        let mut module_features = ModuleFeatures::none();

        let mut feature_set: HashSet<SpecificFeature> = HashSet::new();

        if let TargetCpu::Native = cpu_features.cpu {
            // If the target is `Native`, start with the current set of cpu features..
            detect_features(&mut module_features);
        } else {
            // otherwise, start with the target cpu's default feature set
            feature_set = cpu_features.cpu.features().into_iter().collect();
        }

        for (feature, enabled) in cpu_features.specific_features.iter() {
            if *enabled {
                feature_set.insert(*feature);
            } else {
                feature_set.remove(feature);
            }
        }

        for feature in feature_set {
            use SpecificFeature::*;
            match feature {
                SSE3 => {
                    module_features.sse3 = true;
                }
                SSSE3 => {
                    module_features.ssse3 = true;
                }
                SSE41 => {
                    module_features.sse41 = true;
                }
                SSE42 => {
                    module_features.sse42 = true;
                }
                AVX => {
                    module_features.avx = true;
                }
                BMI1 => {
                    module_features.bmi1 = true;
                }
                BMI2 => {
                    module_features.bmi2 = true;
                }
                Popcnt => {
                    module_features.popcnt = true;
                }
                Lzcnt => {
                    module_features.lzcnt = true;
                }
            }
        }
        module_features
    }
}

impl Default for CpuFeatures {
    fn default() -> Self {
        Self::detect_cpuid()
    }
}

impl CpuFeatures {
    pub fn new(cpu: TargetCpu, specific_features: HashMap<SpecificFeature, bool>) -> Self {
        Self {
            cpu,
            specific_features,
        }
    }

    /// Return a `CpuFeatures` that uses the CPUID instruction to determine which features to enable.
    pub fn detect_cpuid() -> Self {
        CpuFeatures {
            cpu: TargetCpu::Native,
            specific_features: HashMap::new(),
        }
    }

    /// Return a `CpuFeatures` with no optional features enabled.
    pub fn baseline() -> Self {
        CpuFeatures {
            cpu: TargetCpu::Baseline,
            specific_features: HashMap::new(),
        }
    }

    pub fn set(&mut self, sf: SpecificFeature, enabled: bool) {
        self.specific_features.insert(sf, enabled);
    }

    /// Return a `cranelift_codegen::isa::Builder` configured with these CPU features.

    pub fn isa_builder(&self, target: Triple) -> Result<isa::Builder, Error> {
        use SpecificFeature::*;
        use TargetCpu::*;

        let mut isa_builder = if let Native = self.cpu {
            cranelift_native::builder().map_err(|_| {
                Error::Unsupported("host machine is not a supported target".to_string())
            })
        } else {
            isa::lookup(target).map_err(Error::UnsupportedIsa)
        }?;

        let mut specific_features = self.specific_features.clone();

        // add any features from the CPU profile if they are not already individually specified
        for cpu_feature in self.cpu.features() {
            specific_features.entry(cpu_feature).or_insert(true);
        }

        for (feature, enabled) in specific_features.into_iter() {
            let enabled = if enabled { "true" } else { "false" };
            match feature {
                SSE3 => isa_builder.set("has_sse3", enabled).unwrap(),
                SSSE3 => isa_builder.set("has_ssse3", enabled).unwrap(),
                SSE41 => isa_builder.set("has_sse41", enabled).unwrap(),
                SSE42 => isa_builder.set("has_sse42", enabled).unwrap(),
                Popcnt => isa_builder.set("has_popcnt", enabled).unwrap(),
                AVX => isa_builder.set("has_avx", enabled).unwrap(),
                BMI1 => isa_builder.set("has_bmi1", enabled).unwrap(),
                BMI2 => isa_builder.set("has_bmi2", enabled).unwrap(),
                Lzcnt => isa_builder.set("has_lzcnt", enabled).unwrap(),
            }
        }

        Ok(isa_builder)
    }
}