1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//! A rust implementation of a key-value store using [Log Structured Merge Trees](https://en.wikipedia.org/wiki/Log-structured_merge-tree#:~:text=In%20computer%20science%2C%20the%20log,%2C%20maintain%20key%2Dvalue%20pairs.)
//!
//!
//! ## Example Usage
//!  ```
//! use lsm_engine::{LSMEngine, LSMBuilder} ;
//! fn main() -> Result<(), Box< dyn std::error::Error>> {
//!
//!    let mut lsm = LSMBuilder::new().
//!          persist_data(false). // don't create a "write-ahead log"
 //!         segment_size(2000). // each sst file will have up to 2000 entries
 //!         inmemory_capacity(100). //store only 100 entries in memory
 //!         sparse_offset(20). //store one out of every 20 entries written into segments in memory
 //!         build();
 //!
 //!    let default_lsm = LSMBuilder::new().build(); //an lsm engine with default parameters
 //!
//!     lsm.write("k1".to_owned(), "v1".to_owned())?;
//!     lsm.write("k2".to_owned(), "k2".to_owned())?;
//!     lsm.write("k1".to_owned(), "v_1_1".to_owned())?;
//!     let value = lsm.read("k1")?;
//!     assert_eq!(value, Some("v_1_1".to_owned()));
//!     Ok(())
//! }
//! ```
//! ## Design
//!
//! `lsm_engine` is an embedded key-value store that uses LSM-trees and leverages a [Write-Ahead log](https://en.wikipedia.org/wiki/Write-ahead_logging) (WAL) file for
//! data recovery.
//!
//! The basic architecture is illustrated below:
//!
//! ### Write
//! When a write comes in, the following happens:
//! * The entry is written into the WAL file (unless an explicit request is made not to)
//! * If the size of the internal is at full capacity, the contents are dumped into a segment file, with compaction performed in the end.
//! * The entry is then inserted into the now-empty memtable.
//!
//! ### Read
//! When a request for a read is made, the following happens:
//! * It first checks its internal memtable for the value corresponding to the requested key. If it exists, it returns the value
//! * Otherwise, it looks up the offset of the closest key with its sparse memory index. This is a balanced tree that maintains
//! the position of 1 out of every `sparse_offset` entries in memeory.
//! * It then linearly scans forward from that offset, looking for the desired key-value entry.
//!
//! ### Delete
//! This is just a special case of write, with value being a special tombstone string.
//! For more details with visual illustrations, check out this [blog post](https://navyazaveri.github.io/algorithms/2020/01/12/write-a-kv-store-from-scratch.html)
//!

use crate::memtable::{Memtable};
use crate::sst::{Segment};
use std::collections::BTreeMap;
use std::ops::Bound::{Included, Unbounded};
use rand::Rng;
use thiserror::Error;
use rand::distributions::Alphanumeric;
use crate::kv::{KVPair, KVFileWriter, KVFileReader};
use crate::wal::Wal;
use std::fs::{File, OpenOptions};
use std::path::Path;
use rand::{SeedableRng};

use rand::rngs::StdRng;


#[macro_use]
extern crate lazy_static;


mod memtable;
mod sst;
mod wal;
mod kv;
lazy_static! {

static ref TOMBSTONE_VALUE: String = {
    let rng:StdRng = SeedableRng::seed_from_u64(20);
    rng.sample_iter(&Alphanumeric).take(20).collect::<String>()
    };
}


type KeyOffset = u64;
type SegmentIndex = usize;

#[derive(Error, Debug)]
pub enum Error {
    #[error(transparent)]
    SstError(#[from] sst::SstError),
    #[error(transparent)]
    KvError(#[from] kv::KvError),
}


pub type Result<T> = std::result::Result<T, self::Error>;

pub struct LSMEngine {
    memtable: Memtable<String, String>,
    segments: Vec<Segment>,
    segment_size: usize,
    sparse_memory_index: BTreeMap<String, (KeyOffset, SegmentIndex)>,
    sparse_offset: usize,
    wal: Option<Wal>,

}


pub struct LSMBuilder {
    persist_data: bool,
    segment_size: usize,
    sparse_offset: usize,
    inmemory_capacity: usize,
    wal: Option<Wal>,
}

impl LSMBuilder {
    pub fn new() -> LSMBuilder {
        return Self {
            persist_data: false,
            segment_size: 1500,
            sparse_offset: 35,
            inmemory_capacity: 500,
            wal: None,
        };
    }

    pub fn persist_data(mut self, persist: bool) -> Self {
        self.persist_data = persist;
        return self;
    }

    pub fn segment_size(mut self, size: usize) -> Self {
        self.segment_size = size;
        return self;
    }

    pub fn sparse_offset(mut self, sparse_offset: usize) -> Self {
        self.sparse_offset = sparse_offset;
        return self;
    }
    pub fn wal_path<P: AsRef<Path>>(mut self, path: P) -> Self {
        let file = OpenOptions::new()
            .read(true)
            .write(true)
            .create(true)
            .open(path)
            .unwrap();
        self.wal = Some(Wal::new(file));
        return self;
    }

    pub fn inmemory_capacity(mut self, inmemory_capacity: usize) -> Self {
        self.inmemory_capacity = inmemory_capacity;
        return self;
    }
    pub fn build(self) -> LSMEngine {
        return LSMEngine::new(self.inmemory_capacity, self.segment_size, self.sparse_offset, self.wal);
    }
}

impl LSMEngine {
    fn new(inmemory_capacity: usize, segment_size: usize, sparse_offset: usize, wal: Option<Wal>) -> Self {
        if segment_size < inmemory_capacity {
            panic!("segment size {} cannot be less than in-memory capacity {}", segment_size, inmemory_capacity)
        }

        LSMEngine {
            memtable: Memtable::new(inmemory_capacity),
            segments: Vec::new(),
            sparse_memory_index: BTreeMap::new(),
            segment_size,
            sparse_offset,
            wal,
        }
    }


    fn recover_from(&mut self, wal_file: File) -> Result<()> {
        self.clear();
        let mut wal_file = Wal::new(wal_file);

        for maybe_kv in wal_file.read_from_start()? {
            let kv = maybe_kv?;
            self.write(kv.key, kv.value)?;
        }
        self.wal = Some(wal_file);
        Ok(())
    }

    fn clear(&mut self) {
        self.segments.clear();
        self.sparse_memory_index.clear();
    }


    fn flush_memtable(&mut self) -> Result<Segment> {
        let mut new_segment = Segment::temp();
        for (key, value) in self.memtable.drain() {
            new_segment.write(KVPair { key, value })?;
        }
        return Ok(new_segment);
    }


    fn merge_segments(&mut self) -> Result<()> {
        self.sparse_memory_index.clear();
        let mut count = 0;
        self.segments = sst::merge(std::mem::take(&mut self.segments), self.segment_size,
                                   |segment_index, key_offset, key| {
                                       if count % self.sparse_offset == 0 {
                                           self.sparse_memory_index.insert(key, (key_offset, segment_index));
                                       }
                                       count += 1;
                                   })?;
        Ok(())
    }

    pub fn write(&mut self, key: String, value: String) -> Result<()> {
        if self.wal.is_some() {
            self.wal.as_mut().unwrap().persist(KVPair { key: key.clone(), value: value.clone() })?;
        }
        if self.memtable.at_capacity() & &!self.memtable.contains(&key) {
            let new_segment = self.flush_memtable()?;
            self.segments.push(new_segment);
            self.memtable.insert(key, value);
            self.merge_segments()?;
        } else {
            self.memtable.insert(key, value);
        }
        Ok(())
    }

    ///Unfortunately this is marked as mutable since relies on rust's seek api, which is also
    /// mutable. In the future, this might change to immutable if the seek api changes
    /// or it the issue becomes significant enough to warrant  using `Rc<RefCell<>>`
    pub fn read(&mut self, key: &str) -> Result<Option<String>> {
        if let Some(value) = self.memtable.get(key) {
            if value == &*TOMBSTONE_VALUE {
                return Ok(None);
            }
            return Ok(Some(value.to_owned()));
        }


        //get the biggest element less than or equal to the key
        let mut before = self.sparse_memory_index.range((Unbounded, Included(key.to_owned())));
        let maybe_closest_key = before.next_back();

        if maybe_closest_key.is_none() {
            return Ok(None);
        }

        let (closest_key, (key_offset, segment_index)) = maybe_closest_key.unwrap();

        for index in *segment_index..self.segments.len() {
            let segment = &mut self.segments[index];
            let maybe_value = if index == *segment_index { segment.search_from(key, *key_offset)? } else { segment.search_from_start(key)? };
            if maybe_value.is_some() {
                if maybe_value.as_ref().map(|x| x != &*TOMBSTONE_VALUE).unwrap() { return Ok(maybe_value); };

                //if it's marked with a tombstone value, it's a "deleted" key
                return Ok(None);
            }
        }

        Ok(None)
    }
    pub fn delete(&mut self, key: &str) -> Result<()> {
        if self.wal.is_some() {
            self.wal.as_mut().unwrap().persist(KVPair { key: key.to_owned(), value: TOMBSTONE_VALUE.to_string() })?;
        }
        self.write(key.to_owned(), TOMBSTONE_VALUE.to_string())?;
        Ok(())
    }

    fn contains(&mut self, key: &str) -> Result<bool> {

//TODO: use a scalable bloom filter for faster lookups
        let maybe_value = self.read(key)?;
        return Ok(maybe_value.is_some());
    }
}

impl Default for LSMEngine {
    fn default() -> Self {
        return LSMBuilder::new().build();
    }
}

#[cfg(test)]
mod tests {
    use crate::{LSMEngine, LSMBuilder};
    use crate::{TOMBSTONE_VALUE};
    use rand::seq::SliceRandom;
    use rand::{SeedableRng};

    use rand::rngs::StdRng;
    use std::collections::{HashMap};


    #[test]
    fn it_works() -> std::result::Result<(), Box<dyn std::error::Error>> {
        let mut lsm = LSMBuilder::new().
            persist_data(false).
            segment_size(100).
            sparse_offset(2).
            inmemory_capacity(3).
            build();
        lsm.write("k1".to_owned(), "v1".to_owned())?;
        lsm.write("k2".to_owned(), "v2".to_owned())?;
        lsm.write("k3".to_owned(), "v3".to_owned())?;

        for (k, v) in vec![("k1", "v1"), ("k2", "v2"), ("k3", "v3")] {
            assert_eq!(lsm.read(k)?, Some(v.to_owned()));
        }
        Ok(())
    }


    #[test]
    fn test_deletions() -> std::result::Result<(), Box<dyn std::error::Error>> {
        let mut lsm = LSMBuilder::new()
            .persist_data(false)
            .segment_size(2)
            .inmemory_capacity(1)
            .sparse_offset(2)
            .build();
        lsm.write("k1".to_owned(), "v1".to_owned())?;
        lsm.write("k2".to_owned(), "v2".to_owned())?;
        lsm.delete("k1")?;
        let value = lsm.read("k1")?;
        assert!(value.is_none());

        Ok(())
    }

    #[test]
    fn test_reads_on_duplicate_keys() -> std::result::Result<(), Box<dyn std::error::Error>> {
        let mut lsm = LSMBuilder::new().
            persist_data(false).
            segment_size(2).
            inmemory_capacity(1).
            sparse_offset(2).
            build();

        lsm.write("k1".to_owned(), "v1".to_owned())?;
        lsm.write("k2".to_owned(), "k2".to_owned())?;
        lsm.write("k1".to_owned(), "v_1_1".to_owned())?;
        lsm.write("k3".to_owned(), "v3".to_owned())?;

        let value = lsm.read("k1")?;
        assert_eq!(value, Some("v_1_1".to_owned()));
        Ok(())
    }

    #[test]
    fn test_on_large_dataset() -> std::result::Result<(), Box<dyn std::error::Error>> {
        let mut lsm = LSMEngine::default();
        let dataset: Vec<_> = (0..5000).map(|i| ("k".to_owned() + &i.to_string(), "v".to_owned() + &i.to_string())).collect();
        let mut rng: StdRng = SeedableRng::seed_from_u64(20);
        let mut seen = HashMap::new();


        for (k, v) in dataset.iter() {
            lsm.write(k.clone(), v.clone())?;
            seen.insert(k, v.clone());

            let (random_key, random_value) = dataset.choose(&mut rng).unwrap();
            let mut value = None;

            if seen.contains_key(random_key) {
                value = seen.get(random_key);
            }
            assert_eq!(lsm.read(random_key)?.as_ref(), value);
        }

        Ok(())
    }

    #[test]
    fn test_recovery_with_wal() -> std::result::Result<(), Box<dyn std::error::Error>> {
        let mut lsm = LSMBuilder::new().wal_path("foo").build();
        let dataset: Vec<_> = (0..20).map(|i| ("k".to_owned() + &i.to_string(), "v".to_owned() + &i.to_string())).collect();

        for (key, v) in dataset.iter() {
            lsm.write(key.to_string(), v.to_string())?;
        }


        for i in 10..dataset.len() {
            let (k, v) = &dataset[i];
            lsm.delete(k)?;
        }

        let mut new_lsm = LSMBuilder::new().build();
        new_lsm.recover_from(lsm.wal.unwrap().file)?;
        for i in 0..10 {
            let (k, v) = &dataset[i];
            assert_eq!(new_lsm.read(k)?, Some(v.to_owned()));
        }

        for i in 10..dataset.len() {
            let (k, v) = &dataset[i];
            assert_eq!(new_lsm.read(k)?, None);
        }
        std::fs::remove_file("foo")?;
        Ok(())
    }

    #[test]
    fn test_contains() -> std::result::Result<(), Box<dyn std::error::Error>> {
        let mut lsm = LSMBuilder::new().inmemory_capacity(1).build();
        lsm.write("k1".to_owned(), "v1".to_owned())?;
        lsm.delete("k1")?;
        assert_eq!(lsm.contains("k1")?, false);
        assert_eq!(lsm.contains("k2")?, false);
        Ok(())
    }
}