1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
//! A platform agnostic driver to interface with LSM9DS1 3D accelerometer, 3D gyroscope, 3D magnetometer sensor module.
//!
//! ### Datasheets
//! - [LSM9DS1](https://www.st.com/resource/en/datasheet/lsm9ds1.pdf)
//!
#![no_std]
// #![deny(warnings, missing_docs)]
pub mod accel;
pub mod gyro;
pub mod mag;
pub mod register;

use accel::AccelSettings;
use gyro::GyroSettings;
use mag::MagSettings;

pub mod interface;
use interface::{Interface, Sensor};

/// Accelerometer/Gyroscope's ID
const WHO_AM_I_AG: u8 = 0x68;
/// Magnetometer's ID
const WHO_AM_I_M: u8 = 0x3D;
/// temperature scale
const TEMP_SCALE: f32 = 16.0;
/// The output of the temperature sensor is 0 (typ.) at 25 °C. see page 14: Temperature sensor characteristics
const TEMP_BIAS: f32 = 25.0;

/// LSM9DS1 init struct.
/// Use this struct to configure sensors and init LSM9DS1 with an interface of your choice.
pub struct LSM9DS1Init {
    pub accel: AccelSettings,
    pub gyro: GyroSettings,
    pub mag: MagSettings,
}

impl Default for LSM9DS1Init {
    fn default() -> Self {
        Self {
            accel: AccelSettings::default(),
            gyro: GyroSettings::default(),
            mag: MagSettings::default(),
        }
    }
}

impl LSM9DS1Init {
    /// Constructs a new LSM9DS1 driver instance with a I2C or SPI peripheral.
    ///
    /// # Arguments
    /// * `interface` - `SpiInterface` or `I2cInterface`
    pub fn with_interface<T>(self, interface: T) -> LSM9DS1<T>
    where
        T: Interface,
    {
        LSM9DS1 {
            interface,
            accel: self.accel,
            gyro: self.gyro,
            mag: self.mag,
        }
    }
}

/// LSM9DS1 IMU
pub struct LSM9DS1<T>
where
    T: Interface,
{
    interface: T,
    accel: AccelSettings,
    gyro: GyroSettings,
    mag: MagSettings,
}

impl<T> LSM9DS1<T>
where
    T: Interface,
{
    fn reachable(&mut self, sensor: Sensor) -> Result<bool, T::Error> {
        use Sensor::*;
        let mut bytes = [0u8; 1];
        let (who_am_i, register) = match sensor {
            Accelerometer | Gyro | Temperature => (WHO_AM_I_AG, register::AG::WHO_AM_I.addr()),
            Magnetometer => (WHO_AM_I_M, register::Mag::WHO_AM_I.addr()),
        };

        self.interface.read(sensor, register, &mut bytes)?;
        Ok(bytes[0] == who_am_i)
    }

    /// Verifies communication with WHO_AM_I register
    pub fn accel_is_reacheable(&mut self) -> Result<bool, T::Error> {
        self.reachable(Sensor::Accelerometer)
    }
    /// Verifies communication with WHO_AM_I register
    pub fn mag_is_reacheable(&mut self) -> Result<bool, T::Error> {
        self.reachable(Sensor::Magnetometer)
    }
    /// Initializes Accelerometer with sensor settings.
    pub fn begin_accel(&mut self) -> Result<(), T::Error> {
        self.interface.write(
            Sensor::Accelerometer,
            register::AG::CTRL_REG5_XL.addr(),
            self.accel.ctrl_reg5_xl(),
        )?;
        self.interface.write(
            Sensor::Accelerometer,
            register::AG::CTRL_REG6_XL.addr(),
            self.accel.ctrl_reg6_xl(),
        )?;
        self.interface.write(
            Sensor::Accelerometer,
            register::AG::CTRL_REG7_XL.addr(),
            self.accel.ctrl_reg7_xl(),
        )?;
        Ok(())
    }
    /// Initializes Gyro with sensor settings.
    pub fn begin_gyro(&mut self) -> Result<(), T::Error> {
        self.interface.write(
            Sensor::Gyro,
            register::AG::CTRL_REG1_G.addr(),
            self.gyro.ctrl_reg1_g(),
        )?;
        self.interface.write(
            Sensor::Gyro,
            register::AG::CTRL_REG2_G.addr(),
            self.gyro.ctrl_reg2_g(),
        )?;
        self.interface.write(
            Sensor::Gyro,
            register::AG::CTRL_REG3_G.addr(),
            self.gyro.ctrl_reg3_g(),
        )?;
        self.interface.write(
            Sensor::Gyro,
            register::AG::CTRL_REG4.addr(),
            self.gyro.ctrl_reg4(),
        )?;
        Ok(())
    }
    /// Initializes Magnetometer with sensor settings.
    pub fn begin_mag(&mut self) -> Result<(), T::Error> {
        self.interface.write(
            Sensor::Magnetometer,
            register::Mag::CTRL_REG1_M.addr(),
            self.mag.ctrl_reg1_m(),
        )?;
        self.interface.write(
            Sensor::Magnetometer,
            register::Mag::CTRL_REG2_M.addr(),
            self.mag.ctrl_reg2_m(),
        )?;
        self.interface.write(
            Sensor::Magnetometer,
            register::Mag::CTRL_REG3_M.addr(),
            self.mag.ctrl_reg3_m(),
        )?;
        self.interface.write(
            Sensor::Magnetometer,
            register::Mag::CTRL_REG4_M.addr(),
            self.mag.ctrl_reg4_m(),
        )?;
        self.interface.write(
            Sensor::Magnetometer,
            register::Mag::CTRL_REG5_M.addr(),
            self.mag.ctrl_reg5_m(),
        )?;
        Ok(())
    }

    fn data_available(&mut self, sensor: Sensor) -> Result<u8, T::Error> {
        use Sensor::*;
        let register = match sensor {
            Accelerometer | Gyro | Temperature => register::AG::STATUS_REG_1.addr(),
            Magnetometer => register::Mag::STATUS_REG_M.addr(),
        };
        let mut bytes = [0u8; 1];
        self.interface.read(sensor, register, &mut bytes)?;
        Ok(bytes[0])
    }
    /// Sees if new Accelerometer data is available
    pub fn accel_data_available(&mut self) -> Result<bool, T::Error> {
        match self.data_available(Sensor::Accelerometer)? {
            x if x & 0x01 > 0 => Ok(true),
            _ => Ok(false),
        }
    }
    /// Sees if new Gyro data is available
    pub fn gyro_data_available(&mut self) -> Result<bool, T::Error> {
        match self.data_available(Sensor::Gyro)? {
            x if x & 0x02 > 0 => Ok(true),
            _ => Ok(false),
        }
    }
    /// Sees if new Magnetometer data is available
    pub fn mag_data_available(&mut self) -> Result<bool, T::Error> {
        match self.data_available(Sensor::Magnetometer)? {
            x if x & 0x01 > 0 => Ok(true),
            _ => Ok(false),
        }
    }
    /// Sees if new Temperature data is available
    pub fn temp_data_available(&mut self) -> Result<bool, T::Error> {
        match self.data_available(Sensor::Temperature)? {
            x if x & 0x04 > 0 => Ok(true),
            _ => Ok(false),
        }
    }
    /// raw sensor reading for x, y, z axis
    fn read_sensor_raw(&mut self, sensor: Sensor, addr: u8) -> Result<(i16, i16, i16), T::Error> {
        let mut bytes = [0u8; 6];
        self.interface.read(sensor, addr, &mut bytes)?;
        let x: i16 = (bytes[1] as i16) << 8 | bytes[0] as i16;
        let y: i16 = (bytes[3] as i16) << 8 | bytes[2] as i16;
        let z: i16 = (bytes[5] as i16) << 8 | bytes[4] as i16;
        Ok((x, y, z))
    }
    /// raw accelerometer readings
    pub fn read_accel_raw(&mut self) -> Result<(i16, i16, i16), T::Error> {
        self.read_sensor_raw(Sensor::Accelerometer, register::AG::OUT_X_L_XL.addr())
    }
    /// calculated accelerometer readings (x, y, z)
    pub fn read_accel(&mut self) -> Result<(f32, f32, f32), T::Error> {
        let (x, y, z) = self.read_accel_raw()?;
        let sensitivity = self.accel.scale.sensitivity();
        Ok((
            x as f32 * sensitivity,
            y as f32 * sensitivity,
            z as f32 * sensitivity,
        ))
    }
    /// raw gyro readings
    pub fn read_gyro_raw(&mut self) -> Result<(i16, i16, i16), T::Error> {
        self.read_sensor_raw(Sensor::Gyro, register::AG::OUT_X_L_G.addr())
    }
    /// calculated gyro readings (x, y, z)
    pub fn read_gyro(&mut self) -> Result<(f32, f32, f32), T::Error> {
        let (x, y, z) = self.read_gyro_raw()?;
        let sensitivity = self.gyro.scale.sensitivity();
        Ok((
            x as f32 * sensitivity,
            y as f32 * sensitivity,
            z as f32 * sensitivity,
        ))
    }
    /// raw magnetometer readings
    pub fn read_mag_raw(&mut self) -> Result<(i16, i16, i16), T::Error> {
        self.read_sensor_raw(Sensor::Magnetometer, register::Mag::OUT_X_L_M.addr())
    }
    /// calculated magnetometer readings (x, y, z)
    pub fn read_mag(&mut self) -> Result<(f32, f32, f32), T::Error> {
        let (x, y, z) = self.read_mag_raw()?;
        let sensitivity = self.mag.scale.sensitivity();
        Ok((
            x as f32 * sensitivity,
            y as f32 * sensitivity,
            z as f32 * sensitivity,
        ))
    }
    /// Reads calculated temperature in Celsius
    pub fn read_temp(&mut self) -> Result<f32, T::Error> {
        let mut bytes = [0u8; 2];
        self.interface.read(
            Sensor::Accelerometer,
            register::AG::OUT_TEMP_L.addr(),
            &mut bytes,
        )?;
        let result: i16 = (bytes[1] as i16) << 8 | bytes[0] as i16;
        Ok((result as f32) / TEMP_SCALE + TEMP_BIAS)
    }
}