1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#![no_std]
extern crate embedded_hal as hal;
mod reverse_bits;
mod buffer_position;

use hal::blocking::spi::Write;
use hal::spi::{Mode, Phase, Polarity};
use hal::digital::OutputPin;


pub const MODE: Mode = Mode {
    polarity: Polarity::IdleLow,
    phase: Phase::CaptureOnSecondTransition,
};

pub struct Ls010b7dh01<SPI, CS, DISP> {
    spi: SPI,
    cs: CS,
    disp: DISP,
    buffer: [[u8; 16]; 128],
}

impl<SPI, CS, DISP, E> Ls010b7dh01<SPI, CS, DISP>
where
    SPI: Write<u8, Error = E>,
    CS: OutputPin,
    DISP: OutputPin,
{
    /// Create a new Ls010b7dh01 object
    ///
    /// `disp` is the pin connected to the display_enable pin of
    /// the memory LCD.
    pub fn new(spi: SPI, mut cs: CS, mut disp: DISP) -> Self {
        disp.set_low();
        cs.set_low();

        let buffer = [[0; 16]; 128];

        Self {
            spi,
            cs,
            disp,
            buffer,
        }
    }

    /// Enable the LCD
    pub fn enable(&mut self) {
        self.disp.set_high();
    }

    /// Disable the LCD
    pub fn disable(&mut self) {
        self.disp.set_low();
    }

    /// Write a single pixel at (x, y) a given value
    ///
    /// true is a black pixel
    /// false is a white pixel
    pub fn write_pixel(&mut self, x: u8, y: u8, val: bool) {
        if x >= 128 || y >= 128 {
            return
        }

        let (bit, bucket) = buffer_position::get_position(x);

        // Black is 0; white is 1 so to write a pixel
        // we have to reset the bit
        if val {
            self.buffer[y as usize][bucket as usize] &= !(1 << bit);
        } else {
            self.buffer[y as usize][bucket as usize] |= 1 << bit;
        }
    }

    /// A demo function for writing every pixel in 
    /// alternating off/on
    pub fn write_checkerboard(&mut self) {
        for i in 0..128 {
            for j in 0..64 {
                self.write_pixel(j*2 + i%2, i, true);
            }
        }
    }

    /// Draw a rectangle
    ///
    /// (x, y) are bottom right of the rectangle
    pub fn draw_rect(&mut self, x: u8, y: u8, width: u8, height: u8) {
        if x > 128 || y > 128 {
            return
        }

        let x_end = x + width;
        let y_end = y + height;

        for i in x..x_end {
            if i > 128 {
                break; 
            }

            self.write_pixel(i, y, true);
            if y_end < 128 {
                self.write_pixel(i, y_end-1, true);
            }
        }

        for i in y..y_end {
            if i > 128 {
                break;
            }

            self.write_pixel(x, i, true);
            if x_end < 128 {
                self.write_pixel(x_end-1, i, true);
            }
        }
    }

    /// Draw a Circle to the Buffer
    ///
    /// Note: This algorithm is pulled directly from wikipedia:
    ///       https://en.wikipedia.org/wiki/Midpoint_circle_algorithm
    pub fn draw_circle(&mut self, x0: u8, y0: u8, r: u8, value: bool) {
        let x0 = x0 as i32;
        let y0 = y0 as i32;
        let r = r as i32;

        let mut x: i32 = r - 1;
        let mut y: i32 = 0;
        let mut dx: i32 = 1;
        let mut dy: i32 = 1;
        let mut err: i32 = dx - (r << 1);

        while x >= y {
            self.write_pixel((x0 + x) as u8, (y0 + y) as u8, value);
            self.write_pixel((x0 + y) as u8, (y0 + x) as u8, value);
            self.write_pixel((x0 - y) as u8, (y0 + x) as u8, value);
            self.write_pixel((x0 - x) as u8, (y0 + y) as u8, value);

            self.write_pixel((x0 - x) as u8, (y0 - y) as u8, value);
            self.write_pixel((x0 - y) as u8, (y0 - x) as u8, value);
            self.write_pixel((x0 + y) as u8, (y0 - x) as u8, value);
            self.write_pixel((x0 + x) as u8, (y0 - y) as u8, value);

            if err <= 0 {
                y += 1;
                err += dy;
                dy += 2;
            }

            if err > 0 {
                x -= 1;
                dx += 2;
                err += dx - (r << 1);
            }
        }
    }

    /// Draw the buffer to the screen
    pub fn flush_buffer(&mut self) {
        self.cs.set_high();

        // Write main message
        let _ = self.spi.write(&[ 0x80 ]);

        // Pack buffer into byte form and send
        let mut buffer = [0; 18];
        for i in 0..128 {
            buffer[0] = reverse_bits::msb2lsb(i+1);
            buffer[1..17].clone_from_slice(&self.buffer[i as usize][0..16]);
            let _ = self.spi.write(&buffer);
        }

        // Write our final ending
        let _ = self.spi.write(&[0x00]);

        self.cs.set_low();
    }

    /// Clear the screen and the buffer
    pub fn clear(&mut self) {
        self.write_spi(&[0x20, 0x00]);

        for line in self.buffer.iter_mut() {
            for elem in line {
                *elem = 0xFF;
            }
        }
    }

    /// Enter display mode for power savings
    pub fn display_mode(&mut self) {
        self.write_spi(&[0x00, 0x00]);
    }

    /// Internal function for handling the chip select
    fn write_spi(&mut self, data: &[u8]) {
        self.cs.set_high();

        let _ = self.spi.write(data);

        self.cs.set_low();
    }
}