1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#![allow(clippy::mutex_atomic)]
use crate::codes::BinaryCode;
use m4ri_rust::friendly::BinMatrix;
use m4ri_rust::friendly::BinVector;
use std::cell::UnsafeCell;
use std::ptr;
use std::sync::Mutex;

/// 'Concatenated' Linear Codes
///
/// This struct allows to construct a Linear code from the direct sum
/// of smaller codes.
///
/// It will construct the generator matrix lazily and use the encode and
/// decode mechanism of the 'child' codes.
#[derive(Serialize)]
pub struct ConcatenatedCode<'a> {
    codes: Vec<&'a dyn BinaryCode>,
    #[serde(skip, default = "default_mutex")]
    init: Mutex<bool>,
    #[serde(skip, default = "default_generator")]
    generator: UnsafeCell<*mut BinMatrix>,
}

#[allow(dead_code)]
fn default_mutex() -> Mutex<bool> {
    Mutex::new(false)
}

#[allow(dead_code)]
fn default_generator() -> UnsafeCell<*mut BinMatrix> {
    UnsafeCell::new(ptr::null_mut())
}

unsafe impl<'a> Sync for ConcatenatedCode<'a> {}

impl<'codes> Clone for ConcatenatedCode<'codes> {
    fn clone(&self) -> Self {
        ConcatenatedCode {
            codes: self.codes.clone(),
            init: Mutex::new(false),
            generator: UnsafeCell::new(ptr::null_mut()),
        }
    }
}

impl<'codes> ConcatenatedCode<'codes> {
    pub fn new(codes: Vec<&'codes dyn BinaryCode>) -> ConcatenatedCode<'codes> {
        ConcatenatedCode {
            codes,
            init: Mutex::new(false),
            generator: UnsafeCell::new(ptr::null_mut()),
        }
    }
}

impl<'codes> BinaryCode for ConcatenatedCode<'codes> {
    fn name(&self) -> String {
        let names = self.codes.iter().fold(
            String::with_capacity(self.codes.iter().fold(0, |acc, c| acc + 2 + c.name().len())),
            |mut s, code| {
                s.push_str(&code.name());
                s.push_str(", ");
                s
            },
        );
        format!(
            "[{}, {}] Concatenated code codes=[{}]",
            self.length(),
            self.dimension(),
            names,
        )
    }

    fn length(&self) -> usize {
        self.codes.iter().fold(0usize, |a, c| a + c.length())
    }

    fn dimension(&self) -> usize {
        self.codes.iter().fold(0usize, |a, c| a + c.dimension())
    }

    fn generator_matrix(&self) -> &BinMatrix {
        debug_assert_ne!(
            self.codes.len(),
            0,
            "We need at least one code for this to work"
        );
        // check if we've initialized the generator
        {
            let mut initialized = self.init.lock().unwrap();
            if !*initialized {
                let mut gen = Box::new(self.codes[0].generator_matrix().clone());
                for code in self.codes.iter().skip(1) {
                    let corner = (gen.nrows(), gen.ncols());
                    gen = Box::new(gen.augmented(&BinMatrix::zero(gen.nrows(), code.length())));
                    gen = Box::new(gen.stacked(&BinMatrix::zero(code.dimension(), gen.ncols())));
                    gen.set_window(corner.0, corner.1, code.generator_matrix());
                }
                unsafe {
                    *(self.generator.get()) = Box::into_raw(gen);
                }
                *initialized = true;
            };
        }
        unsafe { (*(self.generator.get())).as_ref().unwrap() }
    }

    fn parity_check_matrix(&self) -> &BinMatrix {
        panic!("Not yet implemented");
    }

    fn encode(&self, c: &BinVector) -> BinVector {
        let mut encoded = BinVector::with_capacity(self.dimension());
        let mut slice = c.clone();
        for code in self.codes.iter() {
            let next_encode = BinVector::from(slice.split_off(code.dimension()));
            debug_assert_eq!(slice.len(), code.dimension(), "split dimension incorrect");
            encoded.extend_from_binvec(&code.encode(&slice));
            slice = next_encode;
        }
        encoded
    }

    fn decode_to_message(&self, c: &BinVector) -> Result<BinVector, &str> {
        let mut decoded = c.clone();
        let stor = unsafe { decoded.get_storage_mut() };
        let u64_len = stor.len() * (std::mem::size_of::<u64>() / std::mem::size_of::<usize>());
        let slice =
            unsafe { std::slice::from_raw_parts_mut(stor.as_mut_ptr() as *mut u64, u64_len) };
        self.decode_slice(slice);
        decoded.truncate(self.dimension());
        Ok(decoded)
    }

    fn decode_slice(&self, c: &mut [u64]) {
        debug_assert!(c.len() < 30, "can't deal with this long input");
        let mut bit_selection = [0u64; 30];

        let mut read_start_bit = 0;
        let mut write_start_bit = 0;
        for code in &self.codes {
            let read_range = read_start_bit..(read_start_bit + code.length());
            let blocks = read_range.len() / 64;
            for block in &mut bit_selection[..=blocks] {
                *block = 0;
            }
            for (idx, pos) in read_range.into_iter().enumerate() {
                bit_selection[idx / 64] |= ((c[pos / 64] >> (pos % 64)) & 1) << (idx % 64);
            }

            code.decode_slice(&mut bit_selection[..=blocks]);

            let write_range = write_start_bit..(write_start_bit + code.dimension());
            for (idx, pos) in write_range.into_iter().enumerate() {
                let mask = !(1 << (pos % 64));
                c[pos / 64] = (c[pos / 64] & mask)
                    | (!mask & ((bit_selection[idx / 64] >> (idx % 64)) << (pos % 64)))
            }
            read_start_bit += code.length();
            write_start_bit += code.dimension();
        }
        // mask last block
        c[write_start_bit / 64] &= (1 << (write_start_bit % 64)) - 1;
    }

    fn bias(&self, delta: f64) -> f64 {
        self.codes
            .iter()
            .fold(1f64, |acc, code| acc * code.bias(delta))
    }
}

#[cfg(feature = "hamming")]
#[cfg(test)]
mod tests {
    use super::*;
    use crate::codes::hamming::*;
    use m4ri_rust::friendly::BinVector;

    fn get_code() -> ConcatenatedCode<'static> {
        let codes: Vec<&dyn BinaryCode> = vec![&HammingCode7_4, &HammingCode3_1];
        ConcatenatedCode::new(codes)
    }

    #[test]
    fn test_concatenated_code() {
        let code = get_code();

        assert_eq!(code.length(), 7 + 3, "Length wrong");
        assert_eq!(code.dimension(), 4 + 1, "Dimension wrong");

        let mut input = BinVector::from_bytes(&[0b1010_1000]);
        input.truncate(5);
        assert_eq!(
            input,
            BinVector::from_bools(&[true, false, true, false, true])
        );

        let mut encoded = BinVector::from_bytes(&[0b1010_1011, 0b1100_0000]);
        encoded.truncate(10);
        assert_eq!(
            *encoded,
            *code.encode(&input),
            "encode(input) doesn't match encoded"
        );

        // idempotent
        assert_eq!(
            input,
            code.decode_to_message(&code.encode(&input)).unwrap(),
            "not idempotent"
        );
    }

    #[test]
    fn test_random_samples() {
        let code = ConcatenatedCode::new(vec![&HammingCode15_11, &HammingCode7_4, &HammingCode3_1]);

        for _ in 0..100 {
            let v = BinVector::random(code.length());
            let x = code.decode_to_message(&v).unwrap();
            let cw = code.decode_to_code(&v).unwrap();
            assert_eq!(&code.encode(&x), &cw);
            assert!((v + cw).count_ones() < 5);
        }
    }
}