1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
//! Implements the covering codes reduction and sparse secret transformation
use crate::oracle::LpnOracle;
use m4ri_rust::friendly::BinMatrix;
use m4ri_rust::friendly::BinVector;
use rayon::prelude::*;

use crate::codes::BinaryCode;
use rand::prelude::*;

/// Sparse secret reduction
///
/// Changes the distribution of the secret to that of the noise
///
/// `$k' = k$`
/// `$n' = n-k$`
/// `$d' = d$`
/// `$d'_s = d$`
pub fn sparse_secret_reduce(oracle: &mut LpnOracle) {
    println!("Reducing to a sparse secret");
    let k = oracle.k as usize;
    let mut rng = thread_rng();
    // get M, e, c'
    let (m, c_prime, e, samples) = loop {
        let (a, b, e, samples) = {
            let samples: Vec<_> = oracle
                .samples
                .choose_multiple(&mut rng, k)
                .cloned()
                .collect();
            // replace by matrix directly?
            let mut b = BinVector::with_capacity(k);
            let mut e = BinVector::with_capacity(k);
            (
                // vectors on the columns
                BinMatrix::new(
                    samples
                        .iter()
                        .map(|q| {
                            b.push(q.c);
                            e.push(q.e);
                            q.a.clone()
                        })
                        .collect(),
                ),
                b,
                e,
                samples,
            )
        };
        if a.clone().echelonize() == k {
            break (a, b, e, samples);
        }
    };

    // update the secret:
    let original_secret = oracle.secret.clone();
    println!(
        "the secret prior to reduction to a sparse secret was: {:?}",
        original_secret
    );
    debug_assert_eq!((&original_secret * &m.transposed()) + e, c_prime);
    oracle.secret = &(&m * &original_secret) + &c_prime;

    debug_assert_eq!(
        (&oracle.secret + &c_prime) * m.transposed().inverted(),
        original_secret
    );

    let m_t_inv = m.inverted();

    // remove the samples we took
    // XXX do this differently so we don't need unstable features.
    for q in samples.into_iter() {
        oracle.samples.remove_item(&q);
    }

    // update the samples
    let secret = &oracle.secret;
    oracle.samples.par_iter_mut().for_each(|query| {
        let new_v = &query.a * &m_t_inv;
        query.c ^= &new_v * &c_prime;
        debug_assert_eq!((secret * &new_v) ^ query.e, query.c);
        query.a = new_v;
    });

    oracle.sparse_transform_matrix = Some(m);
    oracle.sparse_transform_vector = Some(c_prime);
    oracle.delta_s = oracle.delta;
}

/// Undo the sparse secret reduction for secrets.
pub fn unsparse_secret(oracle: &LpnOracle, secret: &BinVector) -> BinVector {
    let m = &oracle
        .sparse_transform_matrix
        .clone()
        .expect("Not a sparse oracle");
    let c_prime = &oracle.sparse_transform_vector.clone().unwrap();

    (secret + c_prime) * m.transposed().inverted()
}

/// Reduce using the covering codes attack (Guo, Johansson, Lohndal; 2014)
///
/// $k' = dim(G)$
/// $n' = n$
/// $d' = d * bc$
/// $d'_s$ depends on $d_s$ and $G$.
pub fn code_reduce<T: BinaryCode + Sync>(oracle: &mut LpnOracle, code: &T) {
    assert!(
        oracle.delta_s > 0.0,
        "This reduction only works for sparse secrets!"
    );
    assert_eq!(
        oracle.k as usize,
        code.length(),
        "The length of the code does not match the problem size!"
    );

    println!("Decoding samples");
    oracle.samples.par_iter_mut().for_each(|query| {
        (*query).a = code.decode_to_message(&query.a).expect("Couldn't decode??");
        debug_assert_eq!(query.a.len(), code.dimension());
    });

    println!("Note that we transformed the secret $s$ into $s'=s*G^T$!");
    let gen_t = code.generator_matrix().transposed();
    oracle.secret = &oracle.secret * &gen_t;

    debug_assert_eq!(oracle.secret.len(), code.dimension());
    oracle.k = code.dimension() as u32;

    println!("Computing new delta");
    oracle.delta *= code.bias(oracle.delta_s);
    println!("New delta = {}", oracle.delta);
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::codes::HammingCode15_11;
    use crate::lf1::fwht_solve;

    #[test]
    fn test_unsparse() {
        // setup
        let mut oracle: LpnOracle = LpnOracle::new(15, 1.0 / 4.0);
        oracle.secret = BinVector::from_function(15, |x| x % 2 == 0);
        let secret = oracle.secret.clone();
        oracle.get_samples(1000);

        // check the sparse secret reduction
        sparse_secret_reduce(&mut oracle);
        let unsps = unsparse_secret(&oracle, &oracle.secret);
        assert_eq!(secret, unsps, "sparse/unsparse unequal");
    }

    #[test]
    fn test_reduction() {
        // setup
        let mut oracle: LpnOracle = LpnOracle::new(15, 1.0 / 8.0);
        oracle.secret = BinVector::from_function(15, |x| x % 2 == 0);
        oracle.get_samples(1_000_000);

        // check the sparse secret reduction
        sparse_secret_reduce(&mut oracle);

        // do the reduction
        let code = HammingCode15_11;
        code_reduce(&mut oracle, &code);
        // get transformed secret for checking
        let secret = oracle.secret.clone();
        // solve
        let fwht_solution = fwht_solve(oracle.clone());
        assert_eq!(secret, fwht_solution, "Found wrong solution");
    }
}