1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#[doc = "Register `STAT` reader"]
pub struct R(crate::R<STAT_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<STAT_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<STAT_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<STAT_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `STAT` writer"]
pub struct W(crate::W<STAT_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<STAT_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<STAT_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<STAT_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Field `RXRDY` reader - Receiver Ready flag. When 1, indicates that data is available to be read from the receiver buffer. Cleared after a read of the RXDAT register."]
pub struct RXRDY_R(crate::FieldReader<bool, bool>);
impl RXRDY_R {
    pub(crate) fn new(bits: bool) -> Self {
        RXRDY_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for RXRDY_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TXRDY` reader - Transmitter Ready flag. When 1, this bit indicates that data may be written to the transmit buffer. Previous data may still be in the process of being transmitted. Cleared when data is written to TXDAT or TXDATCTL until the data is moved to the transmit shift register."]
pub struct TXRDY_R(crate::FieldReader<bool, bool>);
impl TXRDY_R {
    pub(crate) fn new(bits: bool) -> Self {
        TXRDY_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for TXRDY_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `RXOV` writer - Receiver Overrun interrupt flag. This flag applies only to slave mode (Master = 0). This flag is set when the beginning of a received character is detected while the receiver buffer is still in use. If this occurs, the receiver buffer contents are preserved, and the incoming data is lost. Data received by the SPI should be considered undefined if RxOv is set."]
pub struct RXOV_W<'a> {
    w: &'a mut W,
}
impl<'a> RXOV_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 2)) | ((value as u32 & 0x01) << 2);
        self.w
    }
}
#[doc = "Field `TXUR` writer - Transmitter Underrun interrupt flag. This flag applies only to slave mode (Master = 0). In this case, the transmitter must begin sending new data on the next input clock if the transmitter is idle. If that data is not available in the transmitter holding register at that point, there is no data to transmit and the TXUR flag is set. Data transmitted by the SPI should be considered undefined if TXUR is set."]
pub struct TXUR_W<'a> {
    w: &'a mut W,
}
impl<'a> TXUR_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | ((value as u32 & 0x01) << 3);
        self.w
    }
}
#[doc = "Field `SSA` writer - Slave Select Assert. This flag is set whenever any slave select transitions from deasserted to asserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become busy, and allows waking up the device from reduced power modes when a slave mode access begins. This flag is cleared by software."]
pub struct SSA_W<'a> {
    w: &'a mut W,
}
impl<'a> SSA_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | ((value as u32 & 0x01) << 4);
        self.w
    }
}
#[doc = "Field `SSD` writer - Slave Select Deassert. This flag is set whenever any asserted slave selects transition to deasserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become idle. This flag is cleared by software."]
pub struct SSD_W<'a> {
    w: &'a mut W,
}
impl<'a> SSD_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | ((value as u32 & 0x01) << 5);
        self.w
    }
}
#[doc = "Field `STALLED` reader - Stalled status flag. This indicates whether the SPI is currently in a stall condition."]
pub struct STALLED_R(crate::FieldReader<bool, bool>);
impl STALLED_R {
    pub(crate) fn new(bits: bool) -> Self {
        STALLED_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for STALLED_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `ENDTRANSFER` reader - End Transfer control bit. Software can set this bit to force an end to the current transfer when the transmitter finishes any activity already in progress, as if the EOT flag had been set prior to the last transmission. This capability is included to support cases where it is not known when transmit data is written that it will be the end of a transfer. The bit is cleared when the transmitter becomes idle as the transfer comes to an end. Forcing an end of transfer in this manner causes any specified FRAME_DELAY and TRANSFER_DELAY to be inserted."]
pub struct ENDTRANSFER_R(crate::FieldReader<bool, bool>);
impl ENDTRANSFER_R {
    pub(crate) fn new(bits: bool) -> Self {
        ENDTRANSFER_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for ENDTRANSFER_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `ENDTRANSFER` writer - End Transfer control bit. Software can set this bit to force an end to the current transfer when the transmitter finishes any activity already in progress, as if the EOT flag had been set prior to the last transmission. This capability is included to support cases where it is not known when transmit data is written that it will be the end of a transfer. The bit is cleared when the transmitter becomes idle as the transfer comes to an end. Forcing an end of transfer in this manner causes any specified FRAME_DELAY and TRANSFER_DELAY to be inserted."]
pub struct ENDTRANSFER_W<'a> {
    w: &'a mut W,
}
impl<'a> ENDTRANSFER_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 7)) | ((value as u32 & 0x01) << 7);
        self.w
    }
}
#[doc = "Field `MSTIDLE` reader - Master idle status flag. This bit is 1 whenever the SPI master function is fully idle. This means that the transmit holding register is empty and the transmitter is not in the process of sending data."]
pub struct MSTIDLE_R(crate::FieldReader<bool, bool>);
impl MSTIDLE_R {
    pub(crate) fn new(bits: bool) -> Self {
        MSTIDLE_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for MSTIDLE_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl R {
    #[doc = "Bit 0 - Receiver Ready flag. When 1, indicates that data is available to be read from the receiver buffer. Cleared after a read of the RXDAT register."]
    #[inline(always)]
    pub fn rxrdy(&self) -> RXRDY_R {
        RXRDY_R::new((self.bits & 0x01) != 0)
    }
    #[doc = "Bit 1 - Transmitter Ready flag. When 1, this bit indicates that data may be written to the transmit buffer. Previous data may still be in the process of being transmitted. Cleared when data is written to TXDAT or TXDATCTL until the data is moved to the transmit shift register."]
    #[inline(always)]
    pub fn txrdy(&self) -> TXRDY_R {
        TXRDY_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 6 - Stalled status flag. This indicates whether the SPI is currently in a stall condition."]
    #[inline(always)]
    pub fn stalled(&self) -> STALLED_R {
        STALLED_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bit 7 - End Transfer control bit. Software can set this bit to force an end to the current transfer when the transmitter finishes any activity already in progress, as if the EOT flag had been set prior to the last transmission. This capability is included to support cases where it is not known when transmit data is written that it will be the end of a transfer. The bit is cleared when the transmitter becomes idle as the transfer comes to an end. Forcing an end of transfer in this manner causes any specified FRAME_DELAY and TRANSFER_DELAY to be inserted."]
    #[inline(always)]
    pub fn endtransfer(&self) -> ENDTRANSFER_R {
        ENDTRANSFER_R::new(((self.bits >> 7) & 0x01) != 0)
    }
    #[doc = "Bit 8 - Master idle status flag. This bit is 1 whenever the SPI master function is fully idle. This means that the transmit holding register is empty and the transmitter is not in the process of sending data."]
    #[inline(always)]
    pub fn mstidle(&self) -> MSTIDLE_R {
        MSTIDLE_R::new(((self.bits >> 8) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bit 2 - Receiver Overrun interrupt flag. This flag applies only to slave mode (Master = 0). This flag is set when the beginning of a received character is detected while the receiver buffer is still in use. If this occurs, the receiver buffer contents are preserved, and the incoming data is lost. Data received by the SPI should be considered undefined if RxOv is set."]
    #[inline(always)]
    pub fn rxov(&mut self) -> RXOV_W {
        RXOV_W { w: self }
    }
    #[doc = "Bit 3 - Transmitter Underrun interrupt flag. This flag applies only to slave mode (Master = 0). In this case, the transmitter must begin sending new data on the next input clock if the transmitter is idle. If that data is not available in the transmitter holding register at that point, there is no data to transmit and the TXUR flag is set. Data transmitted by the SPI should be considered undefined if TXUR is set."]
    #[inline(always)]
    pub fn txur(&mut self) -> TXUR_W {
        TXUR_W { w: self }
    }
    #[doc = "Bit 4 - Slave Select Assert. This flag is set whenever any slave select transitions from deasserted to asserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become busy, and allows waking up the device from reduced power modes when a slave mode access begins. This flag is cleared by software."]
    #[inline(always)]
    pub fn ssa(&mut self) -> SSA_W {
        SSA_W { w: self }
    }
    #[doc = "Bit 5 - Slave Select Deassert. This flag is set whenever any asserted slave selects transition to deasserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become idle. This flag is cleared by software."]
    #[inline(always)]
    pub fn ssd(&mut self) -> SSD_W {
        SSD_W { w: self }
    }
    #[doc = "Bit 7 - End Transfer control bit. Software can set this bit to force an end to the current transfer when the transmitter finishes any activity already in progress, as if the EOT flag had been set prior to the last transmission. This capability is included to support cases where it is not known when transmit data is written that it will be the end of a transfer. The bit is cleared when the transmitter becomes idle as the transfer comes to an end. Forcing an end of transfer in this manner causes any specified FRAME_DELAY and TRANSFER_DELAY to be inserted."]
    #[inline(always)]
    pub fn endtransfer(&mut self) -> ENDTRANSFER_W {
        ENDTRANSFER_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "SPI Status. Some status flags can be cleared by writing a 1 to that bit position\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [stat](index.html) module"]
pub struct STAT_SPEC;
impl crate::RegisterSpec for STAT_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [stat::R](R) reader structure"]
impl crate::Readable for STAT_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [stat::W](W) writer structure"]
impl crate::Writable for STAT_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets STAT to value 0x0102"]
impl crate::Resettable for STAT_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0x0102
    }
}