1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
#[doc = "Register `CTRL` reader"]
pub struct R(crate::R<CTRL_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<CTRL_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<CTRL_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<CTRL_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `CTRL` writer"]
pub struct W(crate::W<CTRL_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<CTRL_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<CTRL_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<CTRL_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Field `DOWN_L` reader - This bit is 1 when the L or unified counter is counting down. Hardware sets this bit when the counter is counting up, counter limit occurs, and BIDIR = 1.Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
pub struct DOWN_L_R(crate::FieldReader<bool, bool>);
impl DOWN_L_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        DOWN_L_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for DOWN_L_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `DOWN_L` writer - This bit is 1 when the L or unified counter is counting down. Hardware sets this bit when the counter is counting up, counter limit occurs, and BIDIR = 1.Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
pub struct DOWN_L_W<'a> {
    w: &'a mut W,
}
impl<'a> DOWN_L_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | (value as u32 & 0x01);
        self.w
    }
}
#[doc = "Field `STOP_L` reader - When this bit is 1 and HALT is 0, the L or unified counter does not run, but I/O events related to the counter can occur. If a designated start event occurs, this bit is cleared and counting resumes."]
pub struct STOP_L_R(crate::FieldReader<bool, bool>);
impl STOP_L_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        STOP_L_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for STOP_L_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `STOP_L` writer - When this bit is 1 and HALT is 0, the L or unified counter does not run, but I/O events related to the counter can occur. If a designated start event occurs, this bit is cleared and counting resumes."]
pub struct STOP_L_W<'a> {
    w: &'a mut W,
}
impl<'a> STOP_L_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | ((value as u32 & 0x01) << 1);
        self.w
    }
}
#[doc = "Field `HALT_L` reader - When this bit is 1, the L or unified counter does not run and no events can occur. A reset sets this bit. When the HALT_L bit is one, the STOP_L bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, only software can clear this bit to restore counter operation. This bit is set on reset."]
pub struct HALT_L_R(crate::FieldReader<bool, bool>);
impl HALT_L_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        HALT_L_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for HALT_L_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `HALT_L` writer - When this bit is 1, the L or unified counter does not run and no events can occur. A reset sets this bit. When the HALT_L bit is one, the STOP_L bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, only software can clear this bit to restore counter operation. This bit is set on reset."]
pub struct HALT_L_W<'a> {
    w: &'a mut W,
}
impl<'a> HALT_L_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 2)) | ((value as u32 & 0x01) << 2);
        self.w
    }
}
#[doc = "Field `CLRCTR_L` reader - Writing a 1 to this bit clears the L or unified counter. This bit always reads as 0."]
pub struct CLRCTR_L_R(crate::FieldReader<bool, bool>);
impl CLRCTR_L_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        CLRCTR_L_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for CLRCTR_L_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `CLRCTR_L` writer - Writing a 1 to this bit clears the L or unified counter. This bit always reads as 0."]
pub struct CLRCTR_L_W<'a> {
    w: &'a mut W,
}
impl<'a> CLRCTR_L_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | ((value as u32 & 0x01) << 3);
        self.w
    }
}
#[doc = "L or unified counter direction select\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum BIDIR_L_A {
    #[doc = "0: Up. The counter counts up to a limit condition, then is cleared to zero."]
    UP = 0,
    #[doc = "1: Up-down. The counter counts up to a limit, then counts down to a limit condition or to 0."]
    UP_DOWN = 1,
}
impl From<BIDIR_L_A> for bool {
    #[inline(always)]
    fn from(variant: BIDIR_L_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `BIDIR_L` reader - L or unified counter direction select"]
pub struct BIDIR_L_R(crate::FieldReader<bool, BIDIR_L_A>);
impl BIDIR_L_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        BIDIR_L_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> BIDIR_L_A {
        match self.bits {
            false => BIDIR_L_A::UP,
            true => BIDIR_L_A::UP_DOWN,
        }
    }
    #[doc = "Checks if the value of the field is `UP`"]
    #[inline(always)]
    pub fn is_up(&self) -> bool {
        **self == BIDIR_L_A::UP
    }
    #[doc = "Checks if the value of the field is `UP_DOWN`"]
    #[inline(always)]
    pub fn is_up_down(&self) -> bool {
        **self == BIDIR_L_A::UP_DOWN
    }
}
impl core::ops::Deref for BIDIR_L_R {
    type Target = crate::FieldReader<bool, BIDIR_L_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BIDIR_L` writer - L or unified counter direction select"]
pub struct BIDIR_L_W<'a> {
    w: &'a mut W,
}
impl<'a> BIDIR_L_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BIDIR_L_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Up. The counter counts up to a limit condition, then is cleared to zero."]
    #[inline(always)]
    pub fn up(self) -> &'a mut W {
        self.variant(BIDIR_L_A::UP)
    }
    #[doc = "Up-down. The counter counts up to a limit, then counts down to a limit condition or to 0."]
    #[inline(always)]
    pub fn up_down(self) -> &'a mut W {
        self.variant(BIDIR_L_A::UP_DOWN)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | ((value as u32 & 0x01) << 4);
        self.w
    }
}
#[doc = "Field `PRE_L` reader - Specifies the factor by which the SCT clock is prescaled to produce the L or unified counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRE_L+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
pub struct PRE_L_R(crate::FieldReader<u8, u8>);
impl PRE_L_R {
    #[inline(always)]
    pub(crate) fn new(bits: u8) -> Self {
        PRE_L_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for PRE_L_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `PRE_L` writer - Specifies the factor by which the SCT clock is prescaled to produce the L or unified counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRE_L+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
pub struct PRE_L_W<'a> {
    w: &'a mut W,
}
impl<'a> PRE_L_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0xff << 5)) | ((value as u32 & 0xff) << 5);
        self.w
    }
}
#[doc = "Field `DOWN_H` reader - This bit is 1 when the H counter is counting down. Hardware sets this bit when the counter is counting, a counter limit condition occurs, and BIDIR is 1. Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
pub struct DOWN_H_R(crate::FieldReader<bool, bool>);
impl DOWN_H_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        DOWN_H_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for DOWN_H_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `DOWN_H` writer - This bit is 1 when the H counter is counting down. Hardware sets this bit when the counter is counting, a counter limit condition occurs, and BIDIR is 1. Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
pub struct DOWN_H_W<'a> {
    w: &'a mut W,
}
impl<'a> DOWN_H_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 16)) | ((value as u32 & 0x01) << 16);
        self.w
    }
}
#[doc = "Field `STOP_H` reader - When this bit is 1 and HALT is 0, the H counter does not, run but I/O events related to the counter can occur. If such an event matches the mask in the Start register, this bit is cleared and counting resumes."]
pub struct STOP_H_R(crate::FieldReader<bool, bool>);
impl STOP_H_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        STOP_H_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for STOP_H_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `STOP_H` writer - When this bit is 1 and HALT is 0, the H counter does not, run but I/O events related to the counter can occur. If such an event matches the mask in the Start register, this bit is cleared and counting resumes."]
pub struct STOP_H_W<'a> {
    w: &'a mut W,
}
impl<'a> STOP_H_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 17)) | ((value as u32 & 0x01) << 17);
        self.w
    }
}
#[doc = "Field `HALT_H` reader - When this bit is 1, the H counter does not run and no events can occur. A reset sets this bit. When the HALT_H bit is one, the STOP_H bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, this bit can only be cleared by software to restore counter operation. This bit is set on reset."]
pub struct HALT_H_R(crate::FieldReader<bool, bool>);
impl HALT_H_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        HALT_H_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for HALT_H_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `HALT_H` writer - When this bit is 1, the H counter does not run and no events can occur. A reset sets this bit. When the HALT_H bit is one, the STOP_H bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, this bit can only be cleared by software to restore counter operation. This bit is set on reset."]
pub struct HALT_H_W<'a> {
    w: &'a mut W,
}
impl<'a> HALT_H_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 18)) | ((value as u32 & 0x01) << 18);
        self.w
    }
}
#[doc = "Field `CLRCTR_H` reader - Writing a 1 to this bit clears the H counter. This bit always reads as 0."]
pub struct CLRCTR_H_R(crate::FieldReader<bool, bool>);
impl CLRCTR_H_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        CLRCTR_H_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for CLRCTR_H_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `CLRCTR_H` writer - Writing a 1 to this bit clears the H counter. This bit always reads as 0."]
pub struct CLRCTR_H_W<'a> {
    w: &'a mut W,
}
impl<'a> CLRCTR_H_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 19)) | ((value as u32 & 0x01) << 19);
        self.w
    }
}
#[doc = "Direction select\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum BIDIR_H_A {
    #[doc = "0: The H counter counts up to its limit condition, then is cleared to zero."]
    UP = 0,
    #[doc = "1: The H counter counts up to its limit, then counts down to a limit condition or to 0."]
    UP_DOWN = 1,
}
impl From<BIDIR_H_A> for bool {
    #[inline(always)]
    fn from(variant: BIDIR_H_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `BIDIR_H` reader - Direction select"]
pub struct BIDIR_H_R(crate::FieldReader<bool, BIDIR_H_A>);
impl BIDIR_H_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        BIDIR_H_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> BIDIR_H_A {
        match self.bits {
            false => BIDIR_H_A::UP,
            true => BIDIR_H_A::UP_DOWN,
        }
    }
    #[doc = "Checks if the value of the field is `UP`"]
    #[inline(always)]
    pub fn is_up(&self) -> bool {
        **self == BIDIR_H_A::UP
    }
    #[doc = "Checks if the value of the field is `UP_DOWN`"]
    #[inline(always)]
    pub fn is_up_down(&self) -> bool {
        **self == BIDIR_H_A::UP_DOWN
    }
}
impl core::ops::Deref for BIDIR_H_R {
    type Target = crate::FieldReader<bool, BIDIR_H_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BIDIR_H` writer - Direction select"]
pub struct BIDIR_H_W<'a> {
    w: &'a mut W,
}
impl<'a> BIDIR_H_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BIDIR_H_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "The H counter counts up to its limit condition, then is cleared to zero."]
    #[inline(always)]
    pub fn up(self) -> &'a mut W {
        self.variant(BIDIR_H_A::UP)
    }
    #[doc = "The H counter counts up to its limit, then counts down to a limit condition or to 0."]
    #[inline(always)]
    pub fn up_down(self) -> &'a mut W {
        self.variant(BIDIR_H_A::UP_DOWN)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 20)) | ((value as u32 & 0x01) << 20);
        self.w
    }
}
#[doc = "Field `PRE_H` reader - Specifies the factor by which the SCT clock is prescaled to produce the H counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRELH+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
pub struct PRE_H_R(crate::FieldReader<u8, u8>);
impl PRE_H_R {
    #[inline(always)]
    pub(crate) fn new(bits: u8) -> Self {
        PRE_H_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for PRE_H_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `PRE_H` writer - Specifies the factor by which the SCT clock is prescaled to produce the H counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRELH+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
pub struct PRE_H_W<'a> {
    w: &'a mut W,
}
impl<'a> PRE_H_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0xff << 21)) | ((value as u32 & 0xff) << 21);
        self.w
    }
}
impl R {
    #[doc = "Bit 0 - This bit is 1 when the L or unified counter is counting down. Hardware sets this bit when the counter is counting up, counter limit occurs, and BIDIR = 1.Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
    #[inline(always)]
    pub fn down_l(&self) -> DOWN_L_R {
        DOWN_L_R::new((self.bits & 0x01) != 0)
    }
    #[doc = "Bit 1 - When this bit is 1 and HALT is 0, the L or unified counter does not run, but I/O events related to the counter can occur. If a designated start event occurs, this bit is cleared and counting resumes."]
    #[inline(always)]
    pub fn stop_l(&self) -> STOP_L_R {
        STOP_L_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 2 - When this bit is 1, the L or unified counter does not run and no events can occur. A reset sets this bit. When the HALT_L bit is one, the STOP_L bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, only software can clear this bit to restore counter operation. This bit is set on reset."]
    #[inline(always)]
    pub fn halt_l(&self) -> HALT_L_R {
        HALT_L_R::new(((self.bits >> 2) & 0x01) != 0)
    }
    #[doc = "Bit 3 - Writing a 1 to this bit clears the L or unified counter. This bit always reads as 0."]
    #[inline(always)]
    pub fn clrctr_l(&self) -> CLRCTR_L_R {
        CLRCTR_L_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 4 - L or unified counter direction select"]
    #[inline(always)]
    pub fn bidir_l(&self) -> BIDIR_L_R {
        BIDIR_L_R::new(((self.bits >> 4) & 0x01) != 0)
    }
    #[doc = "Bits 5:12 - Specifies the factor by which the SCT clock is prescaled to produce the L or unified counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRE_L+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
    #[inline(always)]
    pub fn pre_l(&self) -> PRE_L_R {
        PRE_L_R::new(((self.bits >> 5) & 0xff) as u8)
    }
    #[doc = "Bit 16 - This bit is 1 when the H counter is counting down. Hardware sets this bit when the counter is counting, a counter limit condition occurs, and BIDIR is 1. Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
    #[inline(always)]
    pub fn down_h(&self) -> DOWN_H_R {
        DOWN_H_R::new(((self.bits >> 16) & 0x01) != 0)
    }
    #[doc = "Bit 17 - When this bit is 1 and HALT is 0, the H counter does not, run but I/O events related to the counter can occur. If such an event matches the mask in the Start register, this bit is cleared and counting resumes."]
    #[inline(always)]
    pub fn stop_h(&self) -> STOP_H_R {
        STOP_H_R::new(((self.bits >> 17) & 0x01) != 0)
    }
    #[doc = "Bit 18 - When this bit is 1, the H counter does not run and no events can occur. A reset sets this bit. When the HALT_H bit is one, the STOP_H bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, this bit can only be cleared by software to restore counter operation. This bit is set on reset."]
    #[inline(always)]
    pub fn halt_h(&self) -> HALT_H_R {
        HALT_H_R::new(((self.bits >> 18) & 0x01) != 0)
    }
    #[doc = "Bit 19 - Writing a 1 to this bit clears the H counter. This bit always reads as 0."]
    #[inline(always)]
    pub fn clrctr_h(&self) -> CLRCTR_H_R {
        CLRCTR_H_R::new(((self.bits >> 19) & 0x01) != 0)
    }
    #[doc = "Bit 20 - Direction select"]
    #[inline(always)]
    pub fn bidir_h(&self) -> BIDIR_H_R {
        BIDIR_H_R::new(((self.bits >> 20) & 0x01) != 0)
    }
    #[doc = "Bits 21:28 - Specifies the factor by which the SCT clock is prescaled to produce the H counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRELH+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
    #[inline(always)]
    pub fn pre_h(&self) -> PRE_H_R {
        PRE_H_R::new(((self.bits >> 21) & 0xff) as u8)
    }
}
impl W {
    #[doc = "Bit 0 - This bit is 1 when the L or unified counter is counting down. Hardware sets this bit when the counter is counting up, counter limit occurs, and BIDIR = 1.Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
    #[inline(always)]
    pub fn down_l(&mut self) -> DOWN_L_W {
        DOWN_L_W { w: self }
    }
    #[doc = "Bit 1 - When this bit is 1 and HALT is 0, the L or unified counter does not run, but I/O events related to the counter can occur. If a designated start event occurs, this bit is cleared and counting resumes."]
    #[inline(always)]
    pub fn stop_l(&mut self) -> STOP_L_W {
        STOP_L_W { w: self }
    }
    #[doc = "Bit 2 - When this bit is 1, the L or unified counter does not run and no events can occur. A reset sets this bit. When the HALT_L bit is one, the STOP_L bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, only software can clear this bit to restore counter operation. This bit is set on reset."]
    #[inline(always)]
    pub fn halt_l(&mut self) -> HALT_L_W {
        HALT_L_W { w: self }
    }
    #[doc = "Bit 3 - Writing a 1 to this bit clears the L or unified counter. This bit always reads as 0."]
    #[inline(always)]
    pub fn clrctr_l(&mut self) -> CLRCTR_L_W {
        CLRCTR_L_W { w: self }
    }
    #[doc = "Bit 4 - L or unified counter direction select"]
    #[inline(always)]
    pub fn bidir_l(&mut self) -> BIDIR_L_W {
        BIDIR_L_W { w: self }
    }
    #[doc = "Bits 5:12 - Specifies the factor by which the SCT clock is prescaled to produce the L or unified counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRE_L+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
    #[inline(always)]
    pub fn pre_l(&mut self) -> PRE_L_W {
        PRE_L_W { w: self }
    }
    #[doc = "Bit 16 - This bit is 1 when the H counter is counting down. Hardware sets this bit when the counter is counting, a counter limit condition occurs, and BIDIR is 1. Hardware clears this bit when the counter is counting down and a limit condition occurs or when the counter reaches 0."]
    #[inline(always)]
    pub fn down_h(&mut self) -> DOWN_H_W {
        DOWN_H_W { w: self }
    }
    #[doc = "Bit 17 - When this bit is 1 and HALT is 0, the H counter does not, run but I/O events related to the counter can occur. If such an event matches the mask in the Start register, this bit is cleared and counting resumes."]
    #[inline(always)]
    pub fn stop_h(&mut self) -> STOP_H_W {
        STOP_H_W { w: self }
    }
    #[doc = "Bit 18 - When this bit is 1, the H counter does not run and no events can occur. A reset sets this bit. When the HALT_H bit is one, the STOP_H bit is cleared. It is possible to remove the halt condition while keeping the SCT in the stop condition (not running) with a single write to this register to simultaneously clear the HALT bit and set the STOP bit. Once set, this bit can only be cleared by software to restore counter operation. This bit is set on reset."]
    #[inline(always)]
    pub fn halt_h(&mut self) -> HALT_H_W {
        HALT_H_W { w: self }
    }
    #[doc = "Bit 19 - Writing a 1 to this bit clears the H counter. This bit always reads as 0."]
    #[inline(always)]
    pub fn clrctr_h(&mut self) -> CLRCTR_H_W {
        CLRCTR_H_W { w: self }
    }
    #[doc = "Bit 20 - Direction select"]
    #[inline(always)]
    pub fn bidir_h(&mut self) -> BIDIR_H_W {
        BIDIR_H_W { w: self }
    }
    #[doc = "Bits 21:28 - Specifies the factor by which the SCT clock is prescaled to produce the H counter clock. The counter clock is clocked at the rate of the SCT clock divided by PRELH+1. Clear the counter (by writing a 1 to the CLRCTR bit) whenever changing the PRE value."]
    #[inline(always)]
    pub fn pre_h(&mut self) -> PRE_H_W {
        PRE_H_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "SCT control register\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [ctrl](index.html) module"]
pub struct CTRL_SPEC;
impl crate::RegisterSpec for CTRL_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [ctrl::R](R) reader structure"]
impl crate::Readable for CTRL_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [ctrl::W](W) writer structure"]
impl crate::Writable for CTRL_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets CTRL to value 0x0004_0004"]
impl crate::Resettable for CTRL_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0x0004_0004
    }
}