1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#[doc = "Register `SLVCTL` reader"]
pub struct R(crate::R<SLVCTL_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<SLVCTL_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<SLVCTL_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<SLVCTL_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `SLVCTL` writer"]
pub struct W(crate::W<SLVCTL_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<SLVCTL_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<SLVCTL_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<SLVCTL_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Slave Continue.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SLVCONTINUE_A {
    #[doc = "0: No effect."]
    NO_EFFECT = 0,
    #[doc = "1: Continue. Informs the Slave function to continue to the next operation, by clearing the SLVPENDING flag in the STAT register. This must be done after writing transmit data, reading received data, or any other housekeeping related to the next bus operation. Automatic Operation has different requirements. SLVCONTINUE should not be set unless SLVPENDING = 1."]
    CONTINUE = 1,
}
impl From<SLVCONTINUE_A> for bool {
    #[inline(always)]
    fn from(variant: SLVCONTINUE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `SLVCONTINUE` reader - Slave Continue."]
pub struct SLVCONTINUE_R(crate::FieldReader<bool, SLVCONTINUE_A>);
impl SLVCONTINUE_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        SLVCONTINUE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> SLVCONTINUE_A {
        match self.bits {
            false => SLVCONTINUE_A::NO_EFFECT,
            true => SLVCONTINUE_A::CONTINUE,
        }
    }
    #[doc = "Checks if the value of the field is `NO_EFFECT`"]
    #[inline(always)]
    pub fn is_no_effect(&self) -> bool {
        **self == SLVCONTINUE_A::NO_EFFECT
    }
    #[doc = "Checks if the value of the field is `CONTINUE`"]
    #[inline(always)]
    pub fn is_continue(&self) -> bool {
        **self == SLVCONTINUE_A::CONTINUE
    }
}
impl core::ops::Deref for SLVCONTINUE_R {
    type Target = crate::FieldReader<bool, SLVCONTINUE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SLVCONTINUE` writer - Slave Continue."]
pub struct SLVCONTINUE_W<'a> {
    w: &'a mut W,
}
impl<'a> SLVCONTINUE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: SLVCONTINUE_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "No effect."]
    #[inline(always)]
    pub fn no_effect(self) -> &'a mut W {
        self.variant(SLVCONTINUE_A::NO_EFFECT)
    }
    #[doc = "Continue. Informs the Slave function to continue to the next operation, by clearing the SLVPENDING flag in the STAT register. This must be done after writing transmit data, reading received data, or any other housekeeping related to the next bus operation. Automatic Operation has different requirements. SLVCONTINUE should not be set unless SLVPENDING = 1."]
    #[inline(always)]
    pub fn continue_(self) -> &'a mut W {
        self.variant(SLVCONTINUE_A::CONTINUE)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | (value as u32 & 0x01);
        self.w
    }
}
#[doc = "Slave NACK.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SLVNACK_A {
    #[doc = "0: No effect."]
    NO_EFFECT = 0,
    #[doc = "1: NACK. Causes the Slave function to NACK the master when the slave is receiving data from the master (Slave Receiver mode)."]
    NACK = 1,
}
impl From<SLVNACK_A> for bool {
    #[inline(always)]
    fn from(variant: SLVNACK_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `SLVNACK` reader - Slave NACK."]
pub struct SLVNACK_R(crate::FieldReader<bool, SLVNACK_A>);
impl SLVNACK_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        SLVNACK_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> SLVNACK_A {
        match self.bits {
            false => SLVNACK_A::NO_EFFECT,
            true => SLVNACK_A::NACK,
        }
    }
    #[doc = "Checks if the value of the field is `NO_EFFECT`"]
    #[inline(always)]
    pub fn is_no_effect(&self) -> bool {
        **self == SLVNACK_A::NO_EFFECT
    }
    #[doc = "Checks if the value of the field is `NACK`"]
    #[inline(always)]
    pub fn is_nack(&self) -> bool {
        **self == SLVNACK_A::NACK
    }
}
impl core::ops::Deref for SLVNACK_R {
    type Target = crate::FieldReader<bool, SLVNACK_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SLVNACK` writer - Slave NACK."]
pub struct SLVNACK_W<'a> {
    w: &'a mut W,
}
impl<'a> SLVNACK_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: SLVNACK_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "No effect."]
    #[inline(always)]
    pub fn no_effect(self) -> &'a mut W {
        self.variant(SLVNACK_A::NO_EFFECT)
    }
    #[doc = "NACK. Causes the Slave function to NACK the master when the slave is receiving data from the master (Slave Receiver mode)."]
    #[inline(always)]
    pub fn nack(self) -> &'a mut W {
        self.variant(SLVNACK_A::NACK)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | ((value as u32 & 0x01) << 1);
        self.w
    }
}
#[doc = "Slave DMA enable.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SLVDMA_A {
    #[doc = "0: Disabled. No DMA requests are issued for Slave mode operation."]
    DISABLED = 0,
    #[doc = "1: Enabled. DMA requests are issued for I2C slave data transmission and reception."]
    ENABLED = 1,
}
impl From<SLVDMA_A> for bool {
    #[inline(always)]
    fn from(variant: SLVDMA_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `SLVDMA` reader - Slave DMA enable."]
pub struct SLVDMA_R(crate::FieldReader<bool, SLVDMA_A>);
impl SLVDMA_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        SLVDMA_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> SLVDMA_A {
        match self.bits {
            false => SLVDMA_A::DISABLED,
            true => SLVDMA_A::ENABLED,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        **self == SLVDMA_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `ENABLED`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        **self == SLVDMA_A::ENABLED
    }
}
impl core::ops::Deref for SLVDMA_R {
    type Target = crate::FieldReader<bool, SLVDMA_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SLVDMA` writer - Slave DMA enable."]
pub struct SLVDMA_W<'a> {
    w: &'a mut W,
}
impl<'a> SLVDMA_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: SLVDMA_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Disabled. No DMA requests are issued for Slave mode operation."]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(SLVDMA_A::DISABLED)
    }
    #[doc = "Enabled. DMA requests are issued for I2C slave data transmission and reception."]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(SLVDMA_A::ENABLED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | ((value as u32 & 0x01) << 3);
        self.w
    }
}
#[doc = "Automatic Acknowledge.When this bit is set, it will cause an I2C header which matches SLVADR0 and the direction set by AUTOMATCHREAD to be ACKed immediately; this is used with DMA to allow processing of the data without intervention. If this bit is clear and a header matches SLVADR0, the behavior is controlled by AUTONACK in the SLVADR0 register: allowing NACK or interrupt.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum AUTOACK_A {
    #[doc = "0: Normal, non-automatic operation. If AUTONACK = 0, an SlvPending interrupt is generated when a matching address is received. If AUTONACK = 1, received addresses are NACKed (ignored)."]
    NORMAL = 0,
    #[doc = "1: A header with matching SLVADR0 and matching direction as set by AUTOMATCHREAD will be ACKed immediately, allowing the master to move on to the data bytes. If the address matches SLVADR0, but the direction does not match AUTOMATCHREAD, the behavior will depend on the AUTONACK bit in the SLVADR0 register: if AUTONACK is set, then it will be Nacked; else if AUTONACK is clear, then a SlvPending interrupt is generated."]
    AUTOMATIC_ACK = 1,
}
impl From<AUTOACK_A> for bool {
    #[inline(always)]
    fn from(variant: AUTOACK_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `AUTOACK` reader - Automatic Acknowledge.When this bit is set, it will cause an I2C header which matches SLVADR0 and the direction set by AUTOMATCHREAD to be ACKed immediately; this is used with DMA to allow processing of the data without intervention. If this bit is clear and a header matches SLVADR0, the behavior is controlled by AUTONACK in the SLVADR0 register: allowing NACK or interrupt."]
pub struct AUTOACK_R(crate::FieldReader<bool, AUTOACK_A>);
impl AUTOACK_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        AUTOACK_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> AUTOACK_A {
        match self.bits {
            false => AUTOACK_A::NORMAL,
            true => AUTOACK_A::AUTOMATIC_ACK,
        }
    }
    #[doc = "Checks if the value of the field is `NORMAL`"]
    #[inline(always)]
    pub fn is_normal(&self) -> bool {
        **self == AUTOACK_A::NORMAL
    }
    #[doc = "Checks if the value of the field is `AUTOMATIC_ACK`"]
    #[inline(always)]
    pub fn is_automatic_ack(&self) -> bool {
        **self == AUTOACK_A::AUTOMATIC_ACK
    }
}
impl core::ops::Deref for AUTOACK_R {
    type Target = crate::FieldReader<bool, AUTOACK_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `AUTOACK` writer - Automatic Acknowledge.When this bit is set, it will cause an I2C header which matches SLVADR0 and the direction set by AUTOMATCHREAD to be ACKed immediately; this is used with DMA to allow processing of the data without intervention. If this bit is clear and a header matches SLVADR0, the behavior is controlled by AUTONACK in the SLVADR0 register: allowing NACK or interrupt."]
pub struct AUTOACK_W<'a> {
    w: &'a mut W,
}
impl<'a> AUTOACK_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: AUTOACK_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Normal, non-automatic operation. If AUTONACK = 0, an SlvPending interrupt is generated when a matching address is received. If AUTONACK = 1, received addresses are NACKed (ignored)."]
    #[inline(always)]
    pub fn normal(self) -> &'a mut W {
        self.variant(AUTOACK_A::NORMAL)
    }
    #[doc = "A header with matching SLVADR0 and matching direction as set by AUTOMATCHREAD will be ACKed immediately, allowing the master to move on to the data bytes. If the address matches SLVADR0, but the direction does not match AUTOMATCHREAD, the behavior will depend on the AUTONACK bit in the SLVADR0 register: if AUTONACK is set, then it will be Nacked; else if AUTONACK is clear, then a SlvPending interrupt is generated."]
    #[inline(always)]
    pub fn automatic_ack(self) -> &'a mut W {
        self.variant(AUTOACK_A::AUTOMATIC_ACK)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 8)) | ((value as u32 & 0x01) << 8);
        self.w
    }
}
#[doc = "When AUTOACK is set, this bit controls whether it matches a read or write request on the next header with an address matching SLVADR0. Since DMA needs to be configured to match the transfer direction, the direction needs to be specified. This bit allows a direction to be chosen for the next operation.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum AUTOMATCHREAD_A {
    #[doc = "0: The expected next operation in Automatic Mode is an I2C write."]
    I2C_WRITE = 0,
    #[doc = "1: The expected next operation in Automatic Mode is an I2C read."]
    I2C_READ = 1,
}
impl From<AUTOMATCHREAD_A> for bool {
    #[inline(always)]
    fn from(variant: AUTOMATCHREAD_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `AUTOMATCHREAD` reader - When AUTOACK is set, this bit controls whether it matches a read or write request on the next header with an address matching SLVADR0. Since DMA needs to be configured to match the transfer direction, the direction needs to be specified. This bit allows a direction to be chosen for the next operation."]
pub struct AUTOMATCHREAD_R(crate::FieldReader<bool, AUTOMATCHREAD_A>);
impl AUTOMATCHREAD_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        AUTOMATCHREAD_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> AUTOMATCHREAD_A {
        match self.bits {
            false => AUTOMATCHREAD_A::I2C_WRITE,
            true => AUTOMATCHREAD_A::I2C_READ,
        }
    }
    #[doc = "Checks if the value of the field is `I2C_WRITE`"]
    #[inline(always)]
    pub fn is_i2c_write(&self) -> bool {
        **self == AUTOMATCHREAD_A::I2C_WRITE
    }
    #[doc = "Checks if the value of the field is `I2C_READ`"]
    #[inline(always)]
    pub fn is_i2c_read(&self) -> bool {
        **self == AUTOMATCHREAD_A::I2C_READ
    }
}
impl core::ops::Deref for AUTOMATCHREAD_R {
    type Target = crate::FieldReader<bool, AUTOMATCHREAD_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `AUTOMATCHREAD` writer - When AUTOACK is set, this bit controls whether it matches a read or write request on the next header with an address matching SLVADR0. Since DMA needs to be configured to match the transfer direction, the direction needs to be specified. This bit allows a direction to be chosen for the next operation."]
pub struct AUTOMATCHREAD_W<'a> {
    w: &'a mut W,
}
impl<'a> AUTOMATCHREAD_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: AUTOMATCHREAD_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "The expected next operation in Automatic Mode is an I2C write."]
    #[inline(always)]
    pub fn i2c_write(self) -> &'a mut W {
        self.variant(AUTOMATCHREAD_A::I2C_WRITE)
    }
    #[doc = "The expected next operation in Automatic Mode is an I2C read."]
    #[inline(always)]
    pub fn i2c_read(self) -> &'a mut W {
        self.variant(AUTOMATCHREAD_A::I2C_READ)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 9)) | ((value as u32 & 0x01) << 9);
        self.w
    }
}
impl R {
    #[doc = "Bit 0 - Slave Continue."]
    #[inline(always)]
    pub fn slvcontinue(&self) -> SLVCONTINUE_R {
        SLVCONTINUE_R::new((self.bits & 0x01) != 0)
    }
    #[doc = "Bit 1 - Slave NACK."]
    #[inline(always)]
    pub fn slvnack(&self) -> SLVNACK_R {
        SLVNACK_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 3 - Slave DMA enable."]
    #[inline(always)]
    pub fn slvdma(&self) -> SLVDMA_R {
        SLVDMA_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 8 - Automatic Acknowledge.When this bit is set, it will cause an I2C header which matches SLVADR0 and the direction set by AUTOMATCHREAD to be ACKed immediately; this is used with DMA to allow processing of the data without intervention. If this bit is clear and a header matches SLVADR0, the behavior is controlled by AUTONACK in the SLVADR0 register: allowing NACK or interrupt."]
    #[inline(always)]
    pub fn autoack(&self) -> AUTOACK_R {
        AUTOACK_R::new(((self.bits >> 8) & 0x01) != 0)
    }
    #[doc = "Bit 9 - When AUTOACK is set, this bit controls whether it matches a read or write request on the next header with an address matching SLVADR0. Since DMA needs to be configured to match the transfer direction, the direction needs to be specified. This bit allows a direction to be chosen for the next operation."]
    #[inline(always)]
    pub fn automatchread(&self) -> AUTOMATCHREAD_R {
        AUTOMATCHREAD_R::new(((self.bits >> 9) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bit 0 - Slave Continue."]
    #[inline(always)]
    pub fn slvcontinue(&mut self) -> SLVCONTINUE_W {
        SLVCONTINUE_W { w: self }
    }
    #[doc = "Bit 1 - Slave NACK."]
    #[inline(always)]
    pub fn slvnack(&mut self) -> SLVNACK_W {
        SLVNACK_W { w: self }
    }
    #[doc = "Bit 3 - Slave DMA enable."]
    #[inline(always)]
    pub fn slvdma(&mut self) -> SLVDMA_W {
        SLVDMA_W { w: self }
    }
    #[doc = "Bit 8 - Automatic Acknowledge.When this bit is set, it will cause an I2C header which matches SLVADR0 and the direction set by AUTOMATCHREAD to be ACKed immediately; this is used with DMA to allow processing of the data without intervention. If this bit is clear and a header matches SLVADR0, the behavior is controlled by AUTONACK in the SLVADR0 register: allowing NACK or interrupt."]
    #[inline(always)]
    pub fn autoack(&mut self) -> AUTOACK_W {
        AUTOACK_W { w: self }
    }
    #[doc = "Bit 9 - When AUTOACK is set, this bit controls whether it matches a read or write request on the next header with an address matching SLVADR0. Since DMA needs to be configured to match the transfer direction, the direction needs to be specified. This bit allows a direction to be chosen for the next operation."]
    #[inline(always)]
    pub fn automatchread(&mut self) -> AUTOMATCHREAD_W {
        AUTOMATCHREAD_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "Slave control register.\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [slvctl](index.html) module"]
pub struct SLVCTL_SPEC;
impl crate::RegisterSpec for SLVCTL_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [slvctl::R](R) reader structure"]
impl crate::Readable for SLVCTL_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [slvctl::W](W) writer structure"]
impl crate::Writable for SLVCTL_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets SLVCTL to value 0"]
impl crate::Resettable for SLVCTL_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}