1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#[doc = "Register `CTRL` reader"]
pub struct R(crate::R<CTRL_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<CTRL_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<CTRL_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<CTRL_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `CTRL` writer"]
pub struct W(crate::W<CTRL_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<CTRL_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<CTRL_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<CTRL_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "The operational mode to use, or 0 if none. Note that the CONFIG register will indicate if specific modes beyond SHA1 and SHA2-256 are available.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum MODE_A {
    #[doc = "0: Disabled"]
    DISABLED = 0,
    #[doc = "1: SHA1 is enabled"]
    SHA1 = 1,
    #[doc = "2: SHA2-256 is enabled"]
    SHA2_256 = 2,
    #[doc = "4: AES if available (see also CRYPTCFG register for more controls)"]
    AES = 4,
    #[doc = "5: ICB-AES if available (see also CRYPTCFG register for more controls)"]
    ICB_AES = 5,
}
impl From<MODE_A> for u8 {
    #[inline(always)]
    fn from(variant: MODE_A) -> Self {
        variant as _
    }
}
#[doc = "Field `Mode` reader - The operational mode to use, or 0 if none. Note that the CONFIG register will indicate if specific modes beyond SHA1 and SHA2-256 are available."]
pub struct MODE_R(crate::FieldReader<u8, MODE_A>);
impl MODE_R {
    #[inline(always)]
    pub(crate) fn new(bits: u8) -> Self {
        MODE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> Option<MODE_A> {
        match self.bits {
            0 => Some(MODE_A::DISABLED),
            1 => Some(MODE_A::SHA1),
            2 => Some(MODE_A::SHA2_256),
            4 => Some(MODE_A::AES),
            5 => Some(MODE_A::ICB_AES),
            _ => None,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        **self == MODE_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `SHA1`"]
    #[inline(always)]
    pub fn is_sha1(&self) -> bool {
        **self == MODE_A::SHA1
    }
    #[doc = "Checks if the value of the field is `SHA2_256`"]
    #[inline(always)]
    pub fn is_sha2_256(&self) -> bool {
        **self == MODE_A::SHA2_256
    }
    #[doc = "Checks if the value of the field is `AES`"]
    #[inline(always)]
    pub fn is_aes(&self) -> bool {
        **self == MODE_A::AES
    }
    #[doc = "Checks if the value of the field is `ICB_AES`"]
    #[inline(always)]
    pub fn is_icb_aes(&self) -> bool {
        **self == MODE_A::ICB_AES
    }
}
impl core::ops::Deref for MODE_R {
    type Target = crate::FieldReader<u8, MODE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `Mode` writer - The operational mode to use, or 0 if none. Note that the CONFIG register will indicate if specific modes beyond SHA1 and SHA2-256 are available."]
pub struct MODE_W<'a> {
    w: &'a mut W,
}
impl<'a> MODE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: MODE_A) -> &'a mut W {
        unsafe { self.bits(variant.into()) }
    }
    #[doc = "Disabled"]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(MODE_A::DISABLED)
    }
    #[doc = "SHA1 is enabled"]
    #[inline(always)]
    pub fn sha1(self) -> &'a mut W {
        self.variant(MODE_A::SHA1)
    }
    #[doc = "SHA2-256 is enabled"]
    #[inline(always)]
    pub fn sha2_256(self) -> &'a mut W {
        self.variant(MODE_A::SHA2_256)
    }
    #[doc = "AES if available (see also CRYPTCFG register for more controls)"]
    #[inline(always)]
    pub fn aes(self) -> &'a mut W {
        self.variant(MODE_A::AES)
    }
    #[doc = "ICB-AES if available (see also CRYPTCFG register for more controls)"]
    #[inline(always)]
    pub fn icb_aes(self) -> &'a mut W {
        self.variant(MODE_A::ICB_AES)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x07) | (value as u32 & 0x07);
        self.w
    }
}
#[doc = "Written with 1 when starting a new Hash/Crypto. It self clears. Note that the WAITING Status bit will clear for a cycle during the initialization from New=1.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum NEW_HASH_AW {
    #[doc = "1: Starts a new Hash/Crypto and initializes the Digest/Result."]
    START = 1,
}
impl From<NEW_HASH_AW> for bool {
    #[inline(always)]
    fn from(variant: NEW_HASH_AW) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `New_Hash` writer - Written with 1 when starting a new Hash/Crypto. It self clears. Note that the WAITING Status bit will clear for a cycle during the initialization from New=1."]
pub struct NEW_HASH_W<'a> {
    w: &'a mut W,
}
impl<'a> NEW_HASH_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: NEW_HASH_AW) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Starts a new Hash/Crypto and initializes the Digest/Result."]
    #[inline(always)]
    pub fn start(self) -> &'a mut W {
        self.variant(NEW_HASH_AW::START)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | ((value as u32 & 0x01) << 4);
        self.w
    }
}
#[doc = "Written with 1 to use DMA to fill INDATA. If Hash, will request from DMA for 16 words and then will process the Hash. If Cryptographic, it will load as many words as needed, including key if not already loaded. It will then request again. Normal model is that the DMA interrupts the processor when its length expires. Note that if the processor will write the key and optionally IV, it should not enable this until it has done so. Otherwise, the DMA will be expected to load those for the 1st block (when needed).\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum DMA_I_A {
    #[doc = "0: DMA is not used. Processor writes the necessary words when WAITING is set (interrupts), unless AHB Master is used."]
    NOT_USED = 0,
    #[doc = "1: DMA will push in the data."]
    PUSH = 1,
}
impl From<DMA_I_A> for bool {
    #[inline(always)]
    fn from(variant: DMA_I_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `DMA_I` reader - Written with 1 to use DMA to fill INDATA. If Hash, will request from DMA for 16 words and then will process the Hash. If Cryptographic, it will load as many words as needed, including key if not already loaded. It will then request again. Normal model is that the DMA interrupts the processor when its length expires. Note that if the processor will write the key and optionally IV, it should not enable this until it has done so. Otherwise, the DMA will be expected to load those for the 1st block (when needed)."]
pub struct DMA_I_R(crate::FieldReader<bool, DMA_I_A>);
impl DMA_I_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        DMA_I_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> DMA_I_A {
        match self.bits {
            false => DMA_I_A::NOT_USED,
            true => DMA_I_A::PUSH,
        }
    }
    #[doc = "Checks if the value of the field is `NOT_USED`"]
    #[inline(always)]
    pub fn is_not_used(&self) -> bool {
        **self == DMA_I_A::NOT_USED
    }
    #[doc = "Checks if the value of the field is `PUSH`"]
    #[inline(always)]
    pub fn is_push(&self) -> bool {
        **self == DMA_I_A::PUSH
    }
}
impl core::ops::Deref for DMA_I_R {
    type Target = crate::FieldReader<bool, DMA_I_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `DMA_I` writer - Written with 1 to use DMA to fill INDATA. If Hash, will request from DMA for 16 words and then will process the Hash. If Cryptographic, it will load as many words as needed, including key if not already loaded. It will then request again. Normal model is that the DMA interrupts the processor when its length expires. Note that if the processor will write the key and optionally IV, it should not enable this until it has done so. Otherwise, the DMA will be expected to load those for the 1st block (when needed)."]
pub struct DMA_I_W<'a> {
    w: &'a mut W,
}
impl<'a> DMA_I_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: DMA_I_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "DMA is not used. Processor writes the necessary words when WAITING is set (interrupts), unless AHB Master is used."]
    #[inline(always)]
    pub fn not_used(self) -> &'a mut W {
        self.variant(DMA_I_A::NOT_USED)
    }
    #[doc = "DMA will push in the data."]
    #[inline(always)]
    pub fn push(self) -> &'a mut W {
        self.variant(DMA_I_A::PUSH)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 8)) | ((value as u32 & 0x01) << 8);
        self.w
    }
}
#[doc = "Written to 1 to use DMA to drain the digest/output. If both DMA_I and DMA_O are set, the DMA has to know to switch direction and the locations. This can be used for crypto uses.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum DMA_O_A {
    #[doc = "0: DMA is not used. Processor reads the digest/output in response to DIGEST interrupt."]
    NOTUSED = 0,
}
impl From<DMA_O_A> for bool {
    #[inline(always)]
    fn from(variant: DMA_O_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `DMA_O` reader - Written to 1 to use DMA to drain the digest/output. If both DMA_I and DMA_O are set, the DMA has to know to switch direction and the locations. This can be used for crypto uses."]
pub struct DMA_O_R(crate::FieldReader<bool, DMA_O_A>);
impl DMA_O_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        DMA_O_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> Option<DMA_O_A> {
        match self.bits {
            false => Some(DMA_O_A::NOTUSED),
            _ => None,
        }
    }
    #[doc = "Checks if the value of the field is `NOTUSED`"]
    #[inline(always)]
    pub fn is_notused(&self) -> bool {
        **self == DMA_O_A::NOTUSED
    }
}
impl core::ops::Deref for DMA_O_R {
    type Target = crate::FieldReader<bool, DMA_O_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `DMA_O` writer - Written to 1 to use DMA to drain the digest/output. If both DMA_I and DMA_O are set, the DMA has to know to switch direction and the locations. This can be used for crypto uses."]
pub struct DMA_O_W<'a> {
    w: &'a mut W,
}
impl<'a> DMA_O_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: DMA_O_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "DMA is not used. Processor reads the digest/output in response to DIGEST interrupt."]
    #[inline(always)]
    pub fn notused(self) -> &'a mut W {
        self.variant(DMA_O_A::NOTUSED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 9)) | ((value as u32 & 0x01) << 9);
        self.w
    }
}
#[doc = "Field `HASHSWPB` reader - If 1, will swap bytes in the word for SHA hashing. The default is byte order (so LSB is 1st byte) but this allows swapping to MSB is 1st such as is shown in SHS spec. For cryptographic swapping, see the CRYPTCFG register."]
pub struct HASHSWPB_R(crate::FieldReader<bool, bool>);
impl HASHSWPB_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        HASHSWPB_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for HASHSWPB_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `HASHSWPB` writer - If 1, will swap bytes in the word for SHA hashing. The default is byte order (so LSB is 1st byte) but this allows swapping to MSB is 1st such as is shown in SHS spec. For cryptographic swapping, see the CRYPTCFG register."]
pub struct HASHSWPB_W<'a> {
    w: &'a mut W,
}
impl<'a> HASHSWPB_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 12)) | ((value as u32 & 0x01) << 12);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:2 - The operational mode to use, or 0 if none. Note that the CONFIG register will indicate if specific modes beyond SHA1 and SHA2-256 are available."]
    #[inline(always)]
    pub fn mode(&self) -> MODE_R {
        MODE_R::new((self.bits & 0x07) as u8)
    }
    #[doc = "Bit 8 - Written with 1 to use DMA to fill INDATA. If Hash, will request from DMA for 16 words and then will process the Hash. If Cryptographic, it will load as many words as needed, including key if not already loaded. It will then request again. Normal model is that the DMA interrupts the processor when its length expires. Note that if the processor will write the key and optionally IV, it should not enable this until it has done so. Otherwise, the DMA will be expected to load those for the 1st block (when needed)."]
    #[inline(always)]
    pub fn dma_i(&self) -> DMA_I_R {
        DMA_I_R::new(((self.bits >> 8) & 0x01) != 0)
    }
    #[doc = "Bit 9 - Written to 1 to use DMA to drain the digest/output. If both DMA_I and DMA_O are set, the DMA has to know to switch direction and the locations. This can be used for crypto uses."]
    #[inline(always)]
    pub fn dma_o(&self) -> DMA_O_R {
        DMA_O_R::new(((self.bits >> 9) & 0x01) != 0)
    }
    #[doc = "Bit 12 - If 1, will swap bytes in the word for SHA hashing. The default is byte order (so LSB is 1st byte) but this allows swapping to MSB is 1st such as is shown in SHS spec. For cryptographic swapping, see the CRYPTCFG register."]
    #[inline(always)]
    pub fn hashswpb(&self) -> HASHSWPB_R {
        HASHSWPB_R::new(((self.bits >> 12) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 0:2 - The operational mode to use, or 0 if none. Note that the CONFIG register will indicate if specific modes beyond SHA1 and SHA2-256 are available."]
    #[inline(always)]
    pub fn mode(&mut self) -> MODE_W {
        MODE_W { w: self }
    }
    #[doc = "Bit 4 - Written with 1 when starting a new Hash/Crypto. It self clears. Note that the WAITING Status bit will clear for a cycle during the initialization from New=1."]
    #[inline(always)]
    pub fn new_hash(&mut self) -> NEW_HASH_W {
        NEW_HASH_W { w: self }
    }
    #[doc = "Bit 8 - Written with 1 to use DMA to fill INDATA. If Hash, will request from DMA for 16 words and then will process the Hash. If Cryptographic, it will load as many words as needed, including key if not already loaded. It will then request again. Normal model is that the DMA interrupts the processor when its length expires. Note that if the processor will write the key and optionally IV, it should not enable this until it has done so. Otherwise, the DMA will be expected to load those for the 1st block (when needed)."]
    #[inline(always)]
    pub fn dma_i(&mut self) -> DMA_I_W {
        DMA_I_W { w: self }
    }
    #[doc = "Bit 9 - Written to 1 to use DMA to drain the digest/output. If both DMA_I and DMA_O are set, the DMA has to know to switch direction and the locations. This can be used for crypto uses."]
    #[inline(always)]
    pub fn dma_o(&mut self) -> DMA_O_W {
        DMA_O_W { w: self }
    }
    #[doc = "Bit 12 - If 1, will swap bytes in the word for SHA hashing. The default is byte order (so LSB is 1st byte) but this allows swapping to MSB is 1st such as is shown in SHS spec. For cryptographic swapping, see the CRYPTCFG register."]
    #[inline(always)]
    pub fn hashswpb(&mut self) -> HASHSWPB_W {
        HASHSWPB_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "Control register to enable and operate Hash and Crypto\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [ctrl](index.html) module"]
pub struct CTRL_SPEC;
impl crate::RegisterSpec for CTRL_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [ctrl::R](R) reader structure"]
impl crate::Readable for CTRL_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [ctrl::W](W) writer structure"]
impl crate::Writable for CTRL_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets CTRL to value 0"]
impl crate::Resettable for CTRL_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}