1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
#[doc = "Register `CFG` reader"]
pub struct R(crate::R<CFG_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<CFG_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<CFG_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<CFG_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `CFG` writer"]
pub struct W(crate::W<CFG_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<CFG_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<CFG_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<CFG_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Peripheral request Enable. If a DMA channel is used to perform a memory-to-memory move, any peripheral DMA request associated with that channel can be disabled to prevent any interaction between the peripheral and the DMA controller.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PERIPHREQEN_A {
    #[doc = "0: Disabled. Peripheral DMA requests are disabled."]
    DISABLED = 0,
    #[doc = "1: Enabled. Peripheral DMA requests are enabled."]
    ENABLED = 1,
}
impl From<PERIPHREQEN_A> for bool {
    #[inline(always)]
    fn from(variant: PERIPHREQEN_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `PERIPHREQEN` reader - Peripheral request Enable. If a DMA channel is used to perform a memory-to-memory move, any peripheral DMA request associated with that channel can be disabled to prevent any interaction between the peripheral and the DMA controller."]
pub struct PERIPHREQEN_R(crate::FieldReader<bool, PERIPHREQEN_A>);
impl PERIPHREQEN_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        PERIPHREQEN_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> PERIPHREQEN_A {
        match self.bits {
            false => PERIPHREQEN_A::DISABLED,
            true => PERIPHREQEN_A::ENABLED,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        **self == PERIPHREQEN_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `ENABLED`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        **self == PERIPHREQEN_A::ENABLED
    }
}
impl core::ops::Deref for PERIPHREQEN_R {
    type Target = crate::FieldReader<bool, PERIPHREQEN_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `PERIPHREQEN` writer - Peripheral request Enable. If a DMA channel is used to perform a memory-to-memory move, any peripheral DMA request associated with that channel can be disabled to prevent any interaction between the peripheral and the DMA controller."]
pub struct PERIPHREQEN_W<'a> {
    w: &'a mut W,
}
impl<'a> PERIPHREQEN_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: PERIPHREQEN_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Disabled. Peripheral DMA requests are disabled."]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(PERIPHREQEN_A::DISABLED)
    }
    #[doc = "Enabled. Peripheral DMA requests are enabled."]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(PERIPHREQEN_A::ENABLED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | (value as u32 & 0x01);
        self.w
    }
}
#[doc = "Hardware Triggering Enable for this channel.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum HWTRIGEN_A {
    #[doc = "0: Disabled. Hardware triggering is not used."]
    DISABLED = 0,
    #[doc = "1: Enabled. Use hardware triggering."]
    ENABLED = 1,
}
impl From<HWTRIGEN_A> for bool {
    #[inline(always)]
    fn from(variant: HWTRIGEN_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `HWTRIGEN` reader - Hardware Triggering Enable for this channel."]
pub struct HWTRIGEN_R(crate::FieldReader<bool, HWTRIGEN_A>);
impl HWTRIGEN_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        HWTRIGEN_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> HWTRIGEN_A {
        match self.bits {
            false => HWTRIGEN_A::DISABLED,
            true => HWTRIGEN_A::ENABLED,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        **self == HWTRIGEN_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `ENABLED`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        **self == HWTRIGEN_A::ENABLED
    }
}
impl core::ops::Deref for HWTRIGEN_R {
    type Target = crate::FieldReader<bool, HWTRIGEN_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `HWTRIGEN` writer - Hardware Triggering Enable for this channel."]
pub struct HWTRIGEN_W<'a> {
    w: &'a mut W,
}
impl<'a> HWTRIGEN_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: HWTRIGEN_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Disabled. Hardware triggering is not used."]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(HWTRIGEN_A::DISABLED)
    }
    #[doc = "Enabled. Use hardware triggering."]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(HWTRIGEN_A::ENABLED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | ((value as u32 & 0x01) << 1);
        self.w
    }
}
#[doc = "Trigger Polarity. Selects the polarity of a hardware trigger for this channel.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum TRIGPOL_A {
    #[doc = "0: Active low - falling edge. Hardware trigger is active low or falling edge triggered, based on TRIGTYPE."]
    ACTIVE_LOW_FALLING = 0,
    #[doc = "1: Active high - rising edge. Hardware trigger is active high or rising edge triggered, based on TRIGTYPE."]
    ACTIVE_HIGH_RISING = 1,
}
impl From<TRIGPOL_A> for bool {
    #[inline(always)]
    fn from(variant: TRIGPOL_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `TRIGPOL` reader - Trigger Polarity. Selects the polarity of a hardware trigger for this channel."]
pub struct TRIGPOL_R(crate::FieldReader<bool, TRIGPOL_A>);
impl TRIGPOL_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        TRIGPOL_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> TRIGPOL_A {
        match self.bits {
            false => TRIGPOL_A::ACTIVE_LOW_FALLING,
            true => TRIGPOL_A::ACTIVE_HIGH_RISING,
        }
    }
    #[doc = "Checks if the value of the field is `ACTIVE_LOW_FALLING`"]
    #[inline(always)]
    pub fn is_active_low_falling(&self) -> bool {
        **self == TRIGPOL_A::ACTIVE_LOW_FALLING
    }
    #[doc = "Checks if the value of the field is `ACTIVE_HIGH_RISING`"]
    #[inline(always)]
    pub fn is_active_high_rising(&self) -> bool {
        **self == TRIGPOL_A::ACTIVE_HIGH_RISING
    }
}
impl core::ops::Deref for TRIGPOL_R {
    type Target = crate::FieldReader<bool, TRIGPOL_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TRIGPOL` writer - Trigger Polarity. Selects the polarity of a hardware trigger for this channel."]
pub struct TRIGPOL_W<'a> {
    w: &'a mut W,
}
impl<'a> TRIGPOL_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: TRIGPOL_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Active low - falling edge. Hardware trigger is active low or falling edge triggered, based on TRIGTYPE."]
    #[inline(always)]
    pub fn active_low_falling(self) -> &'a mut W {
        self.variant(TRIGPOL_A::ACTIVE_LOW_FALLING)
    }
    #[doc = "Active high - rising edge. Hardware trigger is active high or rising edge triggered, based on TRIGTYPE."]
    #[inline(always)]
    pub fn active_high_rising(self) -> &'a mut W {
        self.variant(TRIGPOL_A::ACTIVE_HIGH_RISING)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | ((value as u32 & 0x01) << 4);
        self.w
    }
}
#[doc = "Trigger Type. Selects hardware trigger as edge triggered or level triggered.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum TRIGTYPE_A {
    #[doc = "0: Edge. Hardware trigger is edge triggered. Transfers will be initiated and completed, as specified for a single trigger."]
    EDGE = 0,
    #[doc = "1: Level. Hardware trigger is level triggered. Note that when level triggering without burst (BURSTPOWER = 0) is selected, only hardware triggers should be used on that channel. Transfers continue as long as the trigger level is asserted. Once the trigger is de-asserted, the transfer will be paused until the trigger is, again, asserted. However, the transfer will not be paused until any remaining transfers within the current BURSTPOWER length are completed."]
    LEVEL = 1,
}
impl From<TRIGTYPE_A> for bool {
    #[inline(always)]
    fn from(variant: TRIGTYPE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `TRIGTYPE` reader - Trigger Type. Selects hardware trigger as edge triggered or level triggered."]
pub struct TRIGTYPE_R(crate::FieldReader<bool, TRIGTYPE_A>);
impl TRIGTYPE_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        TRIGTYPE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> TRIGTYPE_A {
        match self.bits {
            false => TRIGTYPE_A::EDGE,
            true => TRIGTYPE_A::LEVEL,
        }
    }
    #[doc = "Checks if the value of the field is `EDGE`"]
    #[inline(always)]
    pub fn is_edge(&self) -> bool {
        **self == TRIGTYPE_A::EDGE
    }
    #[doc = "Checks if the value of the field is `LEVEL`"]
    #[inline(always)]
    pub fn is_level(&self) -> bool {
        **self == TRIGTYPE_A::LEVEL
    }
}
impl core::ops::Deref for TRIGTYPE_R {
    type Target = crate::FieldReader<bool, TRIGTYPE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TRIGTYPE` writer - Trigger Type. Selects hardware trigger as edge triggered or level triggered."]
pub struct TRIGTYPE_W<'a> {
    w: &'a mut W,
}
impl<'a> TRIGTYPE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: TRIGTYPE_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Edge. Hardware trigger is edge triggered. Transfers will be initiated and completed, as specified for a single trigger."]
    #[inline(always)]
    pub fn edge(self) -> &'a mut W {
        self.variant(TRIGTYPE_A::EDGE)
    }
    #[doc = "Level. Hardware trigger is level triggered. Note that when level triggering without burst (BURSTPOWER = 0) is selected, only hardware triggers should be used on that channel. Transfers continue as long as the trigger level is asserted. Once the trigger is de-asserted, the transfer will be paused until the trigger is, again, asserted. However, the transfer will not be paused until any remaining transfers within the current BURSTPOWER length are completed."]
    #[inline(always)]
    pub fn level(self) -> &'a mut W {
        self.variant(TRIGTYPE_A::LEVEL)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | ((value as u32 & 0x01) << 5);
        self.w
    }
}
#[doc = "Trigger Burst. Selects whether hardware triggers cause a single or burst transfer.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum TRIGBURST_A {
    #[doc = "0: Single transfer. Hardware trigger causes a single transfer."]
    SINGLE = 0,
    #[doc = "1: Burst transfer. When the trigger for this channel is set to edge triggered, a hardware trigger causes a burst transfer, as defined by BURSTPOWER. When the trigger for this channel is set to level triggered, a hardware trigger causes transfers to continue as long as the trigger is asserted, unless the transfer is complete."]
    BURST = 1,
}
impl From<TRIGBURST_A> for bool {
    #[inline(always)]
    fn from(variant: TRIGBURST_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `TRIGBURST` reader - Trigger Burst. Selects whether hardware triggers cause a single or burst transfer."]
pub struct TRIGBURST_R(crate::FieldReader<bool, TRIGBURST_A>);
impl TRIGBURST_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        TRIGBURST_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> TRIGBURST_A {
        match self.bits {
            false => TRIGBURST_A::SINGLE,
            true => TRIGBURST_A::BURST,
        }
    }
    #[doc = "Checks if the value of the field is `SINGLE`"]
    #[inline(always)]
    pub fn is_single(&self) -> bool {
        **self == TRIGBURST_A::SINGLE
    }
    #[doc = "Checks if the value of the field is `BURST`"]
    #[inline(always)]
    pub fn is_burst(&self) -> bool {
        **self == TRIGBURST_A::BURST
    }
}
impl core::ops::Deref for TRIGBURST_R {
    type Target = crate::FieldReader<bool, TRIGBURST_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TRIGBURST` writer - Trigger Burst. Selects whether hardware triggers cause a single or burst transfer."]
pub struct TRIGBURST_W<'a> {
    w: &'a mut W,
}
impl<'a> TRIGBURST_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: TRIGBURST_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Single transfer. Hardware trigger causes a single transfer."]
    #[inline(always)]
    pub fn single(self) -> &'a mut W {
        self.variant(TRIGBURST_A::SINGLE)
    }
    #[doc = "Burst transfer. When the trigger for this channel is set to edge triggered, a hardware trigger causes a burst transfer, as defined by BURSTPOWER. When the trigger for this channel is set to level triggered, a hardware trigger causes transfers to continue as long as the trigger is asserted, unless the transfer is complete."]
    #[inline(always)]
    pub fn burst(self) -> &'a mut W {
        self.variant(TRIGBURST_A::BURST)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 6)) | ((value as u32 & 0x01) << 6);
        self.w
    }
}
#[doc = "Field `BURSTPOWER` reader - Burst Power is used in two ways. It always selects the address wrap size when SRCBURSTWRAP and/or DSTBURSTWRAP modes are selected (see descriptions elsewhere in this register). When the TRIGBURST field elsewhere in this register = 1, Burst Power selects how many transfers are performed for each DMA trigger. This can be used, for example, with peripherals that contain a FIFO that can initiate a DMA operation when the FIFO reaches a certain level. 0000: Burst size = 1 (20). 0001: Burst size = 2 (21). 0010: Burst size = 4 (22). 1010: Burst size = 1024 (210). This corresponds to the maximum supported transfer count. others: not supported. The total transfer length as defined in the XFERCOUNT bits in the XFERCFG register must be an even multiple of the burst size."]
pub struct BURSTPOWER_R(crate::FieldReader<u8, u8>);
impl BURSTPOWER_R {
    #[inline(always)]
    pub(crate) fn new(bits: u8) -> Self {
        BURSTPOWER_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for BURSTPOWER_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BURSTPOWER` writer - Burst Power is used in two ways. It always selects the address wrap size when SRCBURSTWRAP and/or DSTBURSTWRAP modes are selected (see descriptions elsewhere in this register). When the TRIGBURST field elsewhere in this register = 1, Burst Power selects how many transfers are performed for each DMA trigger. This can be used, for example, with peripherals that contain a FIFO that can initiate a DMA operation when the FIFO reaches a certain level. 0000: Burst size = 1 (20). 0001: Burst size = 2 (21). 0010: Burst size = 4 (22). 1010: Burst size = 1024 (210). This corresponds to the maximum supported transfer count. others: not supported. The total transfer length as defined in the XFERCOUNT bits in the XFERCFG register must be an even multiple of the burst size."]
pub struct BURSTPOWER_W<'a> {
    w: &'a mut W,
}
impl<'a> BURSTPOWER_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0f << 8)) | ((value as u32 & 0x0f) << 8);
        self.w
    }
}
#[doc = "Source Burst Wrap. When enabled, the source data address for the DMA is 'wrapped', meaning that the source address range for each burst will be the same. As an example, this could be used to read several sequential registers from a peripheral for each DMA burst, reading the same registers again for each burst.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SRCBURSTWRAP_A {
    #[doc = "0: Disabled. Source burst wrapping is not enabled for this DMA channel."]
    DISABLED = 0,
    #[doc = "1: Enabled. Source burst wrapping is enabled for this DMA channel."]
    ENABLED = 1,
}
impl From<SRCBURSTWRAP_A> for bool {
    #[inline(always)]
    fn from(variant: SRCBURSTWRAP_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `SRCBURSTWRAP` reader - Source Burst Wrap. When enabled, the source data address for the DMA is 'wrapped', meaning that the source address range for each burst will be the same. As an example, this could be used to read several sequential registers from a peripheral for each DMA burst, reading the same registers again for each burst."]
pub struct SRCBURSTWRAP_R(crate::FieldReader<bool, SRCBURSTWRAP_A>);
impl SRCBURSTWRAP_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        SRCBURSTWRAP_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> SRCBURSTWRAP_A {
        match self.bits {
            false => SRCBURSTWRAP_A::DISABLED,
            true => SRCBURSTWRAP_A::ENABLED,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        **self == SRCBURSTWRAP_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `ENABLED`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        **self == SRCBURSTWRAP_A::ENABLED
    }
}
impl core::ops::Deref for SRCBURSTWRAP_R {
    type Target = crate::FieldReader<bool, SRCBURSTWRAP_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SRCBURSTWRAP` writer - Source Burst Wrap. When enabled, the source data address for the DMA is 'wrapped', meaning that the source address range for each burst will be the same. As an example, this could be used to read several sequential registers from a peripheral for each DMA burst, reading the same registers again for each burst."]
pub struct SRCBURSTWRAP_W<'a> {
    w: &'a mut W,
}
impl<'a> SRCBURSTWRAP_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: SRCBURSTWRAP_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Disabled. Source burst wrapping is not enabled for this DMA channel."]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(SRCBURSTWRAP_A::DISABLED)
    }
    #[doc = "Enabled. Source burst wrapping is enabled for this DMA channel."]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(SRCBURSTWRAP_A::ENABLED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 14)) | ((value as u32 & 0x01) << 14);
        self.w
    }
}
#[doc = "Destination Burst Wrap. When enabled, the destination data address for the DMA is 'wrapped', meaning that the destination address range for each burst will be the same. As an example, this could be used to write several sequential registers to a peripheral for each DMA burst, writing the same registers again for each burst.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum DSTBURSTWRAP_A {
    #[doc = "0: Disabled. Destination burst wrapping is not enabled for this DMA channel."]
    DISABLED = 0,
    #[doc = "1: Enabled. Destination burst wrapping is enabled for this DMA channel."]
    ENABLED = 1,
}
impl From<DSTBURSTWRAP_A> for bool {
    #[inline(always)]
    fn from(variant: DSTBURSTWRAP_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `DSTBURSTWRAP` reader - Destination Burst Wrap. When enabled, the destination data address for the DMA is 'wrapped', meaning that the destination address range for each burst will be the same. As an example, this could be used to write several sequential registers to a peripheral for each DMA burst, writing the same registers again for each burst."]
pub struct DSTBURSTWRAP_R(crate::FieldReader<bool, DSTBURSTWRAP_A>);
impl DSTBURSTWRAP_R {
    #[inline(always)]
    pub(crate) fn new(bits: bool) -> Self {
        DSTBURSTWRAP_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> DSTBURSTWRAP_A {
        match self.bits {
            false => DSTBURSTWRAP_A::DISABLED,
            true => DSTBURSTWRAP_A::ENABLED,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        **self == DSTBURSTWRAP_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `ENABLED`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        **self == DSTBURSTWRAP_A::ENABLED
    }
}
impl core::ops::Deref for DSTBURSTWRAP_R {
    type Target = crate::FieldReader<bool, DSTBURSTWRAP_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `DSTBURSTWRAP` writer - Destination Burst Wrap. When enabled, the destination data address for the DMA is 'wrapped', meaning that the destination address range for each burst will be the same. As an example, this could be used to write several sequential registers to a peripheral for each DMA burst, writing the same registers again for each burst."]
pub struct DSTBURSTWRAP_W<'a> {
    w: &'a mut W,
}
impl<'a> DSTBURSTWRAP_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: DSTBURSTWRAP_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Disabled. Destination burst wrapping is not enabled for this DMA channel."]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(DSTBURSTWRAP_A::DISABLED)
    }
    #[doc = "Enabled. Destination burst wrapping is enabled for this DMA channel."]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(DSTBURSTWRAP_A::ENABLED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 15)) | ((value as u32 & 0x01) << 15);
        self.w
    }
}
#[doc = "Field `CHPRIORITY` reader - Priority of this channel when multiple DMA requests are pending. Eight priority levels are supported: 0x0 = highest priority. 0x7 = lowest priority."]
pub struct CHPRIORITY_R(crate::FieldReader<u8, u8>);
impl CHPRIORITY_R {
    #[inline(always)]
    pub(crate) fn new(bits: u8) -> Self {
        CHPRIORITY_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for CHPRIORITY_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `CHPRIORITY` writer - Priority of this channel when multiple DMA requests are pending. Eight priority levels are supported: 0x0 = highest priority. 0x7 = lowest priority."]
pub struct CHPRIORITY_W<'a> {
    w: &'a mut W,
}
impl<'a> CHPRIORITY_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x07 << 16)) | ((value as u32 & 0x07) << 16);
        self.w
    }
}
impl R {
    #[doc = "Bit 0 - Peripheral request Enable. If a DMA channel is used to perform a memory-to-memory move, any peripheral DMA request associated with that channel can be disabled to prevent any interaction between the peripheral and the DMA controller."]
    #[inline(always)]
    pub fn periphreqen(&self) -> PERIPHREQEN_R {
        PERIPHREQEN_R::new((self.bits & 0x01) != 0)
    }
    #[doc = "Bit 1 - Hardware Triggering Enable for this channel."]
    #[inline(always)]
    pub fn hwtrigen(&self) -> HWTRIGEN_R {
        HWTRIGEN_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 4 - Trigger Polarity. Selects the polarity of a hardware trigger for this channel."]
    #[inline(always)]
    pub fn trigpol(&self) -> TRIGPOL_R {
        TRIGPOL_R::new(((self.bits >> 4) & 0x01) != 0)
    }
    #[doc = "Bit 5 - Trigger Type. Selects hardware trigger as edge triggered or level triggered."]
    #[inline(always)]
    pub fn trigtype(&self) -> TRIGTYPE_R {
        TRIGTYPE_R::new(((self.bits >> 5) & 0x01) != 0)
    }
    #[doc = "Bit 6 - Trigger Burst. Selects whether hardware triggers cause a single or burst transfer."]
    #[inline(always)]
    pub fn trigburst(&self) -> TRIGBURST_R {
        TRIGBURST_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bits 8:11 - Burst Power is used in two ways. It always selects the address wrap size when SRCBURSTWRAP and/or DSTBURSTWRAP modes are selected (see descriptions elsewhere in this register). When the TRIGBURST field elsewhere in this register = 1, Burst Power selects how many transfers are performed for each DMA trigger. This can be used, for example, with peripherals that contain a FIFO that can initiate a DMA operation when the FIFO reaches a certain level. 0000: Burst size = 1 (20). 0001: Burst size = 2 (21). 0010: Burst size = 4 (22). 1010: Burst size = 1024 (210). This corresponds to the maximum supported transfer count. others: not supported. The total transfer length as defined in the XFERCOUNT bits in the XFERCFG register must be an even multiple of the burst size."]
    #[inline(always)]
    pub fn burstpower(&self) -> BURSTPOWER_R {
        BURSTPOWER_R::new(((self.bits >> 8) & 0x0f) as u8)
    }
    #[doc = "Bit 14 - Source Burst Wrap. When enabled, the source data address for the DMA is 'wrapped', meaning that the source address range for each burst will be the same. As an example, this could be used to read several sequential registers from a peripheral for each DMA burst, reading the same registers again for each burst."]
    #[inline(always)]
    pub fn srcburstwrap(&self) -> SRCBURSTWRAP_R {
        SRCBURSTWRAP_R::new(((self.bits >> 14) & 0x01) != 0)
    }
    #[doc = "Bit 15 - Destination Burst Wrap. When enabled, the destination data address for the DMA is 'wrapped', meaning that the destination address range for each burst will be the same. As an example, this could be used to write several sequential registers to a peripheral for each DMA burst, writing the same registers again for each burst."]
    #[inline(always)]
    pub fn dstburstwrap(&self) -> DSTBURSTWRAP_R {
        DSTBURSTWRAP_R::new(((self.bits >> 15) & 0x01) != 0)
    }
    #[doc = "Bits 16:18 - Priority of this channel when multiple DMA requests are pending. Eight priority levels are supported: 0x0 = highest priority. 0x7 = lowest priority."]
    #[inline(always)]
    pub fn chpriority(&self) -> CHPRIORITY_R {
        CHPRIORITY_R::new(((self.bits >> 16) & 0x07) as u8)
    }
}
impl W {
    #[doc = "Bit 0 - Peripheral request Enable. If a DMA channel is used to perform a memory-to-memory move, any peripheral DMA request associated with that channel can be disabled to prevent any interaction between the peripheral and the DMA controller."]
    #[inline(always)]
    pub fn periphreqen(&mut self) -> PERIPHREQEN_W {
        PERIPHREQEN_W { w: self }
    }
    #[doc = "Bit 1 - Hardware Triggering Enable for this channel."]
    #[inline(always)]
    pub fn hwtrigen(&mut self) -> HWTRIGEN_W {
        HWTRIGEN_W { w: self }
    }
    #[doc = "Bit 4 - Trigger Polarity. Selects the polarity of a hardware trigger for this channel."]
    #[inline(always)]
    pub fn trigpol(&mut self) -> TRIGPOL_W {
        TRIGPOL_W { w: self }
    }
    #[doc = "Bit 5 - Trigger Type. Selects hardware trigger as edge triggered or level triggered."]
    #[inline(always)]
    pub fn trigtype(&mut self) -> TRIGTYPE_W {
        TRIGTYPE_W { w: self }
    }
    #[doc = "Bit 6 - Trigger Burst. Selects whether hardware triggers cause a single or burst transfer."]
    #[inline(always)]
    pub fn trigburst(&mut self) -> TRIGBURST_W {
        TRIGBURST_W { w: self }
    }
    #[doc = "Bits 8:11 - Burst Power is used in two ways. It always selects the address wrap size when SRCBURSTWRAP and/or DSTBURSTWRAP modes are selected (see descriptions elsewhere in this register). When the TRIGBURST field elsewhere in this register = 1, Burst Power selects how many transfers are performed for each DMA trigger. This can be used, for example, with peripherals that contain a FIFO that can initiate a DMA operation when the FIFO reaches a certain level. 0000: Burst size = 1 (20). 0001: Burst size = 2 (21). 0010: Burst size = 4 (22). 1010: Burst size = 1024 (210). This corresponds to the maximum supported transfer count. others: not supported. The total transfer length as defined in the XFERCOUNT bits in the XFERCFG register must be an even multiple of the burst size."]
    #[inline(always)]
    pub fn burstpower(&mut self) -> BURSTPOWER_W {
        BURSTPOWER_W { w: self }
    }
    #[doc = "Bit 14 - Source Burst Wrap. When enabled, the source data address for the DMA is 'wrapped', meaning that the source address range for each burst will be the same. As an example, this could be used to read several sequential registers from a peripheral for each DMA burst, reading the same registers again for each burst."]
    #[inline(always)]
    pub fn srcburstwrap(&mut self) -> SRCBURSTWRAP_W {
        SRCBURSTWRAP_W { w: self }
    }
    #[doc = "Bit 15 - Destination Burst Wrap. When enabled, the destination data address for the DMA is 'wrapped', meaning that the destination address range for each burst will be the same. As an example, this could be used to write several sequential registers to a peripheral for each DMA burst, writing the same registers again for each burst."]
    #[inline(always)]
    pub fn dstburstwrap(&mut self) -> DSTBURSTWRAP_W {
        DSTBURSTWRAP_W { w: self }
    }
    #[doc = "Bits 16:18 - Priority of this channel when multiple DMA requests are pending. Eight priority levels are supported: 0x0 = highest priority. 0x7 = lowest priority."]
    #[inline(always)]
    pub fn chpriority(&mut self) -> CHPRIORITY_W {
        CHPRIORITY_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "Configuration register for DMA channel .\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api)."]
pub struct CFG_SPEC;
impl crate::RegisterSpec for CFG_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [cfg::R](R) reader structure"]
impl crate::Readable for CFG_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [cfg::W](W) writer structure"]
impl crate::Writable for CFG_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets CFG to value 0"]
impl crate::Resettable for CFG_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}