1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
use core::fmt;
use core::ops::Deref;
use core::marker::PhantomData;

use crate::{
    typestates::{
        pin::{
            flexcomm::{
                // Trait marking USART peripherals and pins
                Usart,
                UsartPins,
            },
            PinId,
        },
    },
    traits::wg::serial,
    time::Hertz,
};

pub mod config;

/// Serial error
#[derive(Debug)]
pub enum Error {
    /// Framing error
    Framing,
    /// Noise error
    Noise,
    /// RX buffer overrun
    Overrun,
    /// Parity check error
    Parity,
    #[doc(hidden)]
    _Extensible,
}

// /// Interrupt event
// pub enum Event {
//     /// New data has been received
//     Rxne,
//     /// New data can be sent
//     Txe,
//     /// Idle line state detected
//     Idle,
// }

/// USART peripheral operating as serial
pub struct Serial<TX, RX, USART, PINS>
where
    TX: PinId,
    RX: PinId,
    USART: Usart,
    PINS: UsartPins<TX, RX, USART>,
{
    usart: USART,
    pins: PINS,
    _tx: PhantomData<TX>,
    _rx: PhantomData<RX>,
}

// such a Serial can be split() into (Tx, Rx)

// TODO: Consider removing the USART parameter from Tx and Rx
// TODO: Remove code duplication between Tx and Rx

/// Serial transmitter
pub struct Tx<USART: Usart> {
    addr: usize,
    _usart: PhantomData<USART>,
}

/// Serial receiver
pub struct Rx<USART: Usart> {
    addr: usize,
    _usart: PhantomData<USART>,
}

impl<USART: Usart> Deref for Tx<USART> {
    type Target = raw::usart0::RegisterBlock;
    fn deref(&self) -> &Self::Target {
        let ptr = self.addr as *const _;
        unsafe { &*ptr }
    }
}

impl<USART: Usart> Deref for Rx<USART> {
    type Target = raw::usart0::RegisterBlock;
    fn deref(&self) -> &Self::Target {
        let ptr = self.addr as *const _;
        unsafe { &*ptr }
    }
}

impl<TX, RX, USART, PINS> Serial<TX, RX, USART, PINS>
where
    TX: PinId,
    RX: PinId,
    USART: Usart,
    PINS: UsartPins<TX, RX, USART>,
{
    const CLOCK_SPEED: u32 = 12_000_000;

    pub fn new(usart: USART, pins: PINS, config: config::Config) -> Self {
        use self::config::*;

        let speed: Hertz = config.speed.into();
        let speed: u32 = speed.0;

        usart.fifocfg.modify(|_, w| w
            .enabletx().enabled()
            .enablerx().enabled()
        );

        usart.fifotrig.modify(|_, w| unsafe { w
            .txlvl().bits(0)
            .txlvlena().enabled()
            .rxlvl().bits(1)
            .rxlvlena().enabled()
        });

        usart.cfg.write(|w| unsafe { w
            .paritysel().bits(match config.parity {
                Parity::ParityNone => 0,
                Parity::ParityEven => 2,
                Parity::ParityOdd => 3,
            })
            .stoplen().bit(match config.stopbits {
                StopBits::STOP1 => false,
                StopBits::STOP2 => true,
            })
            .datalen().bits(match config.wordlength {
                WordLength::DataBits7 => 0,
                WordLength::DataBits8 => 1,
                WordLength::DataBits9 => 2,
            })

            // these are just some defaults (of zero)

            // loopback mode
            .loop_().normal()
            // asynch mode
            .syncen().asynchronous_mode()
            // polarity
            .clkpol().falling_edge()

            // enable it
            .enable().enabled()
        });

        // baudrate logic from `fsl_usart.c` in SDK
        let mut best_diff = !0;
        let mut best_osr = 15;
        let mut best_brg = !0;

        // SDK says: "Smaller values of OSR can make the sampling position within a data bit less
        // accurate and may potentially cause more noise errors or incorrect data."
        for osr in (9..=16).rev() {
            let brg = Self::CLOCK_SPEED / (osr * speed);
            if brg >= 0xffff {
                continue;
            }
            let realized_speed = Self::CLOCK_SPEED / (osr * brg);
            let diff = if speed > realized_speed { speed - realized_speed} else { realized_speed - speed };
            if diff < best_diff {
                best_diff = diff;
                best_osr = osr;
                best_brg = brg;
            }
        }

        // TODO: return Result instead of panicking
        if best_brg >= 0xffff {
            panic!("baudrate not supported");
        }

        usart.brg.write(|w| unsafe { w.brgval().bits(best_brg as u16 - 1) });
        usart.osr.write(|w| unsafe { w.osrval().bits(best_osr as u8 - 1) });

        Self {
            usart,
            pins,
            _tx: PhantomData,
            _rx: PhantomData,
        }
    }

    fn addr(&self) -> usize {
        &(*self.usart) as *const _ as usize
    }

    pub fn split(self) -> (Tx<USART>, Rx<USART>) {
        // so umm... Tx/Rx "promise" to not step on each others' toes
        //
        // Tx:
        // - reads stat, fifostat
        // - writes fifowr
        //
        // Rx:
        // - reads fifostat and fiford
        // - modifies fifocfg + fifostat on buffer overflow

        (
            Tx {
                addr: self.addr(),
                _usart: PhantomData,
            },
            Rx {
                addr: self.addr(),
                _usart: PhantomData,
            },
        )
    }

    pub fn release(self) -> (USART, PINS) {
        (self.usart, self.pins)
    }
}

impl<TX, RX, USART, PINS> serial::Read<u8> for Serial<TX, RX, USART, PINS>
where
    TX: PinId,
    RX: PinId,
    USART: Usart,
    PINS: UsartPins<TX, RX, USART>,
{
    type Error = Error;

    fn read(&mut self) -> nb::Result<u8, Error> {
        let mut rx: Rx<USART> = Rx {
            addr: self.addr(),
            _usart: PhantomData,
        };
        rx.read()
    }
}

impl<USART: Usart> serial::Read<u8> for Rx<USART> {
    type Error = Error;

    fn read(&mut self) -> nb::Result<u8, Error> {
        let fifostat = self.fifostat.read();

        if fifostat.rxnotempty().bit() {

            // SDK uses stat, and e.g. framerrint instead of framerr,
            // but that's not in the SDK
            let fiford = self.fiford.read();

            if fiford.framerr().bit_is_set() {
                return Err(nb::Error::Other(Error::Framing));
            }

            if fiford.parityerr().bit_is_set() {
                return Err(nb::Error::Other(Error::Parity));
            }

            if fiford.rxnoise().bit_is_set() {
                return Err(nb::Error::Other(Error::Noise));
            }

            if fifostat.rxerr().bit_is_set() {
                // clear by writing 1
                self.fifocfg.modify(|_, w| w.emptyrx().set_bit());
                self.fifostat.modify(|_, w| w.rxerr().set_bit());
                return Err(nb::Error::Other(Error::Overrun));
            }

            Ok(fiford.rxdata().bits() as u8)

        } else {
            // cortex_m_semihosting::hprintln!("not rxnotempty").ok();
            Err(nb::Error::WouldBlock)
        }
    }
}


impl<TX, RX, USART, PINS> serial::Write<u8> for Serial<TX, RX, USART, PINS>
where
    TX: PinId,
    RX: PinId,
    USART: Usart,
    PINS: UsartPins<TX, RX, USART>,
{
    type Error = Error;

    fn flush(&mut self) -> nb::Result<(), Self::Error> {
        let mut tx: Tx<USART> = Tx {
            addr: self.addr(),
            _usart: PhantomData,
        };
        tx.flush()
    }

    fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
        let mut tx: Tx<USART> = Tx {
            addr: self.addr(),
            _usart: PhantomData,
        };
        tx.write(byte)
    }
}

impl<USART: Usart> serial::Write<u8> for Tx<USART> {
    type Error = Error;

    fn flush(&mut self) -> nb::Result<(), Self::Error> {
        if self.stat.read().txidle().bit() {
            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }

    fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
        if self.fifostat.read().txnotfull().bit() {
            // TODO: figure out if we need to perform an 8-bit write
            // This would not be possible via svd2rust API, and need some acrobatics
            self.fifowr.write(|w| unsafe { w.bits(byte as u32) } );

            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }
}

impl<USART: Usart> fmt::Write for Tx<USART>
where
    Tx<USART>: serial::Write<u8>,
{
    fn write_str(&mut self, s: &str) -> fmt::Result {
        use crate::traits::wg::serial::Write;
        let _ = s
            .as_bytes()
            .iter()
            .map(|c| nb::block!(self.write(*c)))
            .last();
        Ok(())
    }
}