1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
use core::marker::PhantomData;
use core::cmp::min;
use crate::time::Hertz;
use crate::traits::wg::blocking::i2c::{
    Read,
    Write,
    WriteRead,
};
use crate::typestates::pin::{
    flexcomm::{
        // Trait marking I2C peripherals and pins
        I2c,
        I2cPins,
    },
    PinId,
};

pub mod prelude {
    pub use super::I2cMaster;
    pub use super::Error as I2cError;
    pub use super::Result as I2cResult;
}

/// I2C error
#[derive(Debug)]
pub enum Error {
    /// Bus error (catch-all)
    Bus,
    /// Arbitration loss
    ArbitrationLoss,
    /// NACK
    NackAddress,
    /// NACK
    NackData,
    /// Start/Stop error
    StartStop,

    #[doc(hidden)]
    _Extensible,
}

pub type Result<T> = core::result::Result<T, Error>;


// TODO: Parametrize with Master/Slave MODE
/// I2C peripheral operating in master mode
pub struct I2cMaster<PIO1, PIO2, I2C, PINS>
where
    PIO1: PinId,
    PIO2: PinId,
    I2C: I2c,
    PINS: I2cPins<PIO1, PIO2, I2C>,
{
    i2c: I2C,
    pins: PINS,
    _pin1: PhantomData<PIO1>,
    _pin2: PhantomData<PIO2>,
}

impl<PIO1, PIO2, I2C, PINS> I2cMaster<PIO1, PIO2, I2C, PINS>
where
    PIO1: PinId,
    PIO2: PinId,
    I2C: I2c,
    PINS: I2cPins<PIO1, PIO2, I2C>,
{
    /// Weird crashes happen when running system at 150Mhz PLL.
    /// Suggested use: 100khz or 400khz
    pub fn new<Speed: Into<Hertz>>(i2c: I2C, pins: PINS, speed: Speed) -> Self {
        // Simplified setup: We always use 12MHz clock, and only support 100kHz
        let speed: Hertz = speed.into();
        let speed: u32 = speed.0;
        assert!(speed <= 1_000_000);
        i2c.cfg.modify(|_, w| w
            .msten().enabled()
            // .slven().disabled()
            // .monen().disabled()
            // ...etc.
        );

        // use cortex_m_semihosting::hprintln;

        // logic from `fsl_i2c.c` in SDK
        let mut best_div: u16 = 0;
        let mut best_scl: u8 = 0;
        let mut best_err: u32 = 0;
        for scl in (2..=9).rev() {
            let denominator = 2 * scl * speed;
            let div = min(10_000, 12_000_000 / denominator);
            let err = 12_000_000 - div * denominator;
            if err < best_err || best_err == 0 {
                // first time, or smaller error
                best_div = div as u16; // limited by 10_000
                best_scl = scl as u8; // limited by 9
                best_err = err;
            }
            if err == 0 || div >= 10_000 {
                // clamped at 10k means next scl is smaller means err is larger
                break;
            }
        }

        // Weird suggestion from UM.
        // UM also claims both that:
        // - DIV must be 1 (?!)
        // - Frequency after clkdiv must be <= 2 mhz
        //
        // if speed.0 == 400 {
        //     best_div = 14;
        //     best_scl = 0;
        // }

        // hprintln!("speed {}, div {}, scl {}", speed, best_div, best_scl).ok();

        // best_div = 10; best_scl = 6;
        // 100 kbits/s: div = 10, scl = 6
        // 400 kbits/s: div = 3, scl = 5
        // 1 mbit/s: div = 1, scl = 6
        i2c.clkdiv.modify(|_, w| unsafe { w.divval().bits(best_div - 1) } );
        i2c.msttime.modify(|_, w| w
            .mstsclhigh().bits(best_scl - 2)
            .mstscllow().bits(best_scl - 2)
        );

        // or whatever...

        Self {
            i2c,
            pins,
            _pin1: PhantomData,
            _pin2: PhantomData,
        }
    }

    pub fn release(self) -> (I2C, PINS) {
        (self.i2c, self.pins)
    }

    #[inline(always)]
    fn return_on_error(&self) -> Result<()> {
        // use cortex_m_semihosting::dbg;
        if self.i2c.stat.read().mststate().is_nack_data() {
            // dbg!(Error::NackData);
            return Err(Error::NackData);
        }
        if self.i2c.stat.read().mststate().is_nack_address() {
            // dbg!(Error::NackData);
            return Err(Error::NackAddress);
        }
        if self.i2c.stat.read().mstarbloss().is_arbitration_loss() {
            // dbg!(Error::NackData);
            return Err(Error::ArbitrationLoss);
        }
        if self.i2c.stat.read().mstststperr().is_error() {
            // dbg!(Error::NackData);
            return Err(Error::StartStop);
        }
        Ok(())
    }

    fn write_without_stop(&mut self, addr: u8, bytes: &[u8]) -> Result<()> {
        self.return_on_error()?;

        // Write the slave address with the RW bit set to 0 to the master data register MSTDAT.
        self.i2c
            .mstdat
            .modify(|_, w| unsafe { w.data().bits(addr << 1) });
        // Start the transmission by setting the MSTSTART bit to 1 in the master control register.
        self.i2c.mstctl.write(|w| w.mststart().start());
        // Wait for the pending status to be set (MSTPENDING = 1) by polling the STAT register
        // TODO: Consider implementing a timeout (loop at most N times...) :TODO
        while self.i2c.stat.read().mstpending().is_in_progress() {
            continue;
        }

        self.return_on_error()?;
        if !self.i2c.stat.read().mststate().is_transmit_ready() {
            // dbg!(Error::Bus);
            return Err(Error::Bus);
        }

        // Send bytes
        for byte in bytes {
            // write a byte
            self.i2c.mstdat.modify(|_, w| unsafe { w.data().bits(*byte) } );
            // instruct master to continue
            self.i2c.mstctl.write(|w| w.mstcontinue().continue_());
            // Wait until done
            while self.i2c.stat.read().mstpending().is_in_progress() { continue; }

            // Error handling
            self.return_on_error()?;
            if !self.i2c.stat.read().mststate().is_transmit_ready() {
                // dbg!(Error::Bus);
                return Err(Error::Bus);
            }
        }

        // Fallthrough is success
        Ok(())
    }

    fn stop(&mut self) -> Result<()> {
        // Stop the transmission by setting the MSTSTOP bit to 1 in the master control register.
        self.i2c.mstctl.write(|w| w.mststop().stop());
        // Wait for the pending status to be set (MSTPENDING = 1) by polling the STAT register
        while self.i2c.stat.read().mstpending().is_in_progress() {}

        self.return_on_error()?;
        if !self.i2c.stat.read().mststate().is_idle() {
            // dbg!(Error::Bus);
            return Err(Error::Bus);
        }

        // Fallthrough is success
        Ok(())
    }
}

impl<PIO1, PIO2, I2C, PINS> Write for I2cMaster<PIO1, PIO2, I2C, PINS>
where
    PIO1: PinId,
    PIO2: PinId,
    I2C: I2c,
    PINS: I2cPins<PIO1, PIO2, I2C>,
{
    type Error = Error;

    fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<()> {
        self.write_without_stop(addr, bytes)?;
        self.stop()
    }
}

impl<PIO1, PIO2, I2C, PINS> Read for I2cMaster<PIO1, PIO2, I2C, PINS>
where
    PIO1: PinId,
    PIO2: PinId,
    I2C: I2c,
    PINS: I2cPins<PIO1, PIO2, I2C>,
{
    type Error = Error;

    fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<()> {
        if let Some((last, buffer)) = buffer.split_last_mut() {

            // Write the slave address with the RW bit set to 1 to the master data register MSTDAT.
            self.i2c.mstdat.modify(|_, w| unsafe { w.data().bits((addr << 1) | 1) } );
            // Start the transmission by setting the MSTSTART bit to 1 in the master control register.
            self.i2c.mstctl.write(|w| w.mststart().start());

            // Wait for the pending status to be set (MSTPENDING = 1) by polling the STAT register
            while self.i2c.stat.read().mstpending().is_in_progress() {}

            self.return_on_error()?;
            if !self.i2c.stat.read().mststate().is_receive_ready() {
                return Err(Error::Bus);
            }


            for byte in buffer {
                // Read a byte
                *byte = self.i2c.mstdat.read().data().bits();
                // Instruct master to continue
                self.i2c.mstctl.write(|w| w.mstcontinue().continue_());

                // Wait for next byte
                while self.i2c.stat.read().mstpending().is_in_progress() {}

                self.return_on_error()?;
                if !self.i2c.stat.read().mststate().is_receive_ready() {
                    return Err(Error::Bus);
                }
            }

            // Read last byte
            *last = self.i2c.mstdat.read().data().bits();

            self.stop()?;
        }

        // Fallthrough is success
        Ok(())
    }
}

impl<PIO1, PIO2, I2C, PINS> WriteRead for I2cMaster<PIO1, PIO2, I2C, PINS>
where
    PIO1: PinId,
    PIO2: PinId,
    I2C: I2c,
    PINS: I2cPins<PIO1, PIO2, I2C>,
{
    type Error = Error;

    fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<()> {
        self.write_without_stop(addr, bytes)?;
        self.read(addr, buffer)?;

        Ok(())
    }
}

        // impl<PINS> I2cCommon for I2cMaster<I2C, PINS>
        // where
        //     PINS: I2cPins<I2C>,
        // {
        //     fn send_byte(&self, byte: u8) -> Result<(), Error> {
        //         // Write the byte
        //         self.i2c.mstdat.modify(|_, w| unsafe { w.data().bits(byte) } );
        //         // Instruct master to continue
        //         self.i2c.mstctl.modify(|_, w| w.mstcontinue().continue_());
        //         // Wait until done
        //         while self.i2c.stat.read().mstpending().is_in_progress() {}
        //         // Check for error
        //         if !self.i2c.stat.read().mststate().is_transmit_ready() {
        //             return Err(Error::Nack);
        //         }

        //         Ok(())
        //     }

        //     fn recv_byte(&self) -> Result<u8, Error> {
        //         let data = self.i2c.mstdat.read().data().bits();
        //         // Wait until done
        //         while self.i2c.stat.read().mstpending().is_in_progress() {}
        //         // Check for error
        //         if !self.i2c.stat.read().mststate().is_receive_ready() {
        //             return Err(Error::Nack);
        //         }
        //         Ok(data)
        //     }
        // }


// macro_rules impl_i2c
// }}

// impl_i2c!(I2c0, I2c0Master);
// impl_i2c!(I2c1, I2c1Master);
// impl_i2c!(I2c2, I2c2Master);
// impl_i2c!(I2c3, I2c3Master);
// impl_i2c!(I2c4, I2c4Master);
// impl_i2c!(I2c5, I2c5Master);
// impl_i2c!(I2c6, I2c6Master);
// impl_i2c!(I2c7, I2c7Master);