1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::USBCMD_D {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = "Possible values of the field `RS`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RSR {
    #[doc = "Writing a 0 to this bit will cause a detach event."]
    DETACH,
    #[doc = "Writing a one to this bit will cause the device controller to enable a pull-up on USB_DP and initiate an attach event. This control bit is not directly connected to the pull-up enable, as the pull-up will become disabled upon transitioning into high-speed mode. Software should use this bit to prevent an attach event before the device controller has been properly initialized."]
    ATTACH,
}
impl RSR {
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        match *self {
            RSR::DETACH => false,
            RSR::ATTACH => true,
        }
    }
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _from(value: bool) -> RSR {
        match value {
            false => RSR::DETACH,
            true => RSR::ATTACH,
        }
    }
    #[doc = "Checks if the value of the field is `DETACH`"]
    #[inline]
    pub fn is_detach(&self) -> bool {
        *self == RSR::DETACH
    }
    #[doc = "Checks if the value of the field is `ATTACH`"]
    #[inline]
    pub fn is_attach(&self) -> bool {
        *self == RSR::ATTACH
    }
}
#[doc = "Possible values of the field `RST`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RSTR {
    #[doc = "Set to 0 by hardware when the reset process is complete."]
    RESETCOMPLETE,
    #[doc = "When software writes a one to this bit, the Device Controller resets its internal pipelines, timers, counters, state machines etc. to their initial values. Writing a one to this bit when the device is in the attached state is not recommended, since the effect on an attached host is undefined. In order to ensure that the device is not in an attached state before initiating a device controller reset, all primed endpoints should be flushed and the USBCMD Run/Stop bit should be set to 0."]
    RESET,
}
impl RSTR {
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        match *self {
            RSTR::RESETCOMPLETE => false,
            RSTR::RESET => true,
        }
    }
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _from(value: bool) -> RSTR {
        match value {
            false => RSTR::RESETCOMPLETE,
            true => RSTR::RESET,
        }
    }
    #[doc = "Checks if the value of the field is `RESETCOMPLETE`"]
    #[inline]
    pub fn is_resetcomplete(&self) -> bool {
        *self == RSTR::RESETCOMPLETE
    }
    #[doc = "Checks if the value of the field is `RESET`"]
    #[inline]
    pub fn is_reset(&self) -> bool {
        *self == RSTR::RESET
    }
}
#[doc = r" Value of the field"]
pub struct SUTWR {
    bits: bool,
}
impl SUTWR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct ATDTWR {
    bits: bool,
}
impl ATDTWR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct ITCR {
    bits: u8,
}
impl ITCR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = "Values that can be written to the field `RS`"]
pub enum RSW {
    #[doc = "Writing a 0 to this bit will cause a detach event."]
    DETACH,
    #[doc = "Writing a one to this bit will cause the device controller to enable a pull-up on USB_DP and initiate an attach event. This control bit is not directly connected to the pull-up enable, as the pull-up will become disabled upon transitioning into high-speed mode. Software should use this bit to prevent an attach event before the device controller has been properly initialized."]
    ATTACH,
}
impl RSW {
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _bits(&self) -> bool {
        match *self {
            RSW::DETACH => false,
            RSW::ATTACH => true,
        }
    }
}
#[doc = r" Proxy"]
pub struct _RSW<'a> {
    w: &'a mut W,
}
impl<'a> _RSW<'a> {
    #[doc = r" Writes `variant` to the field"]
    #[inline]
    pub fn variant(self, variant: RSW) -> &'a mut W {
        {
            self.bit(variant._bits())
        }
    }
    #[doc = "Writing a 0 to this bit will cause a detach event."]
    #[inline]
    pub fn detach(self) -> &'a mut W {
        self.variant(RSW::DETACH)
    }
    #[doc = "Writing a one to this bit will cause the device controller to enable a pull-up on USB_DP and initiate an attach event. This control bit is not directly connected to the pull-up enable, as the pull-up will become disabled upon transitioning into high-speed mode. Software should use this bit to prevent an attach event before the device controller has been properly initialized."]
    #[inline]
    pub fn attach(self) -> &'a mut W {
        self.variant(RSW::ATTACH)
    }
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = "Values that can be written to the field `RST`"]
pub enum RSTW {
    #[doc = "Set to 0 by hardware when the reset process is complete."]
    RESETCOMPLETE,
    #[doc = "When software writes a one to this bit, the Device Controller resets its internal pipelines, timers, counters, state machines etc. to their initial values. Writing a one to this bit when the device is in the attached state is not recommended, since the effect on an attached host is undefined. In order to ensure that the device is not in an attached state before initiating a device controller reset, all primed endpoints should be flushed and the USBCMD Run/Stop bit should be set to 0."]
    RESET,
}
impl RSTW {
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _bits(&self) -> bool {
        match *self {
            RSTW::RESETCOMPLETE => false,
            RSTW::RESET => true,
        }
    }
}
#[doc = r" Proxy"]
pub struct _RSTW<'a> {
    w: &'a mut W,
}
impl<'a> _RSTW<'a> {
    #[doc = r" Writes `variant` to the field"]
    #[inline]
    pub fn variant(self, variant: RSTW) -> &'a mut W {
        {
            self.bit(variant._bits())
        }
    }
    #[doc = "Set to 0 by hardware when the reset process is complete."]
    #[inline]
    pub fn resetcomplete(self) -> &'a mut W {
        self.variant(RSTW::RESETCOMPLETE)
    }
    #[doc = "When software writes a one to this bit, the Device Controller resets its internal pipelines, timers, counters, state machines etc. to their initial values. Writing a one to this bit when the device is in the attached state is not recommended, since the effect on an attached host is undefined. In order to ensure that the device is not in an attached state before initiating a device controller reset, all primed endpoints should be flushed and the USBCMD Run/Stop bit should be set to 0."]
    #[inline]
    pub fn reset(self) -> &'a mut W {
        self.variant(RSTW::RESET)
    }
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _SUTWW<'a> {
    w: &'a mut W,
}
impl<'a> _SUTWW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 13;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _ATDTWW<'a> {
    w: &'a mut W,
}
impl<'a> _ATDTWW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 14;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _ITCW<'a> {
    w: &'a mut W,
}
impl<'a> _ITCW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 255;
        const OFFSET: u8 = 16;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 0 - Run/Stop"]
    #[inline]
    pub fn rs(&self) -> RSR {
        RSR::_from({
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        })
    }
    #[doc = "Bit 1 - Controller reset. Software uses this bit to reset the controller. This bit is set to zero by the Host/Device Controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register."]
    #[inline]
    pub fn rst(&self) -> RSTR {
        RSTR::_from({
            const MASK: bool = true;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        })
    }
    #[doc = "Bit 13 - Setup trip wire During handling a setup packet, this bit is used as a semaphore to ensure that the setup data payload of 8 bytes is extracted from a QH by the DCD without being corrupted. If the setup lockout mode is off (see USBMODE register) then there exists a hazard when new setup data arrives while the DCD is copying the setup data payload from the QH for a previous setup packet. This bit is set and cleared by software and will be cleared by hardware when a hazard exists. (See Section 18.10)."]
    #[inline]
    pub fn sutw(&self) -> SUTWR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 13;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SUTWR { bits }
    }
    #[doc = "Bit 14 - Add dTD trip wire This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoint's linked list. This bit is set and cleared by software during the process of adding a new dTD. See also Section 18.10. This bit shall also be cleared by hardware when its state machine is hazard region for which adding a dTD to a primed endpoint may go unrecognized."]
    #[inline]
    pub fn atdtw(&self) -> ATDTWR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 14;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        ATDTWR { bits }
    }
    #[doc = "Bits 16:23 - Interrupt threshold control. The system software uses this field to set the maximum rate at which the host/device controller will issue interrupts. ITC contains the maximum interrupt interval measured in micro-frames. Valid values are shown below. All other values are reserved. 0x0 = Immediate (no threshold) 0x1 = 1 micro frame. 0x2 = 2 micro frames. 0x8 = 8 micro frames. 0x10 = 16 micro frames. 0x20 = 32 micro frames. 0x40 = 64 micro frames."]
    #[inline]
    pub fn itc(&self) -> ITCR {
        let bits = {
            const MASK: u8 = 255;
            const OFFSET: u8 = 16;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        ITCR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 524288 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 0 - Run/Stop"]
    #[inline]
    pub fn rs(&mut self) -> _RSW {
        _RSW { w: self }
    }
    #[doc = "Bit 1 - Controller reset. Software uses this bit to reset the controller. This bit is set to zero by the Host/Device Controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register."]
    #[inline]
    pub fn rst(&mut self) -> _RSTW {
        _RSTW { w: self }
    }
    #[doc = "Bit 13 - Setup trip wire During handling a setup packet, this bit is used as a semaphore to ensure that the setup data payload of 8 bytes is extracted from a QH by the DCD without being corrupted. If the setup lockout mode is off (see USBMODE register) then there exists a hazard when new setup data arrives while the DCD is copying the setup data payload from the QH for a previous setup packet. This bit is set and cleared by software and will be cleared by hardware when a hazard exists. (See Section 18.10)."]
    #[inline]
    pub fn sutw(&mut self) -> _SUTWW {
        _SUTWW { w: self }
    }
    #[doc = "Bit 14 - Add dTD trip wire This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoint's linked list. This bit is set and cleared by software during the process of adding a new dTD. See also Section 18.10. This bit shall also be cleared by hardware when its state machine is hazard region for which adding a dTD to a primed endpoint may go unrecognized."]
    #[inline]
    pub fn atdtw(&mut self) -> _ATDTWW {
        _ATDTWW { w: self }
    }
    #[doc = "Bits 16:23 - Interrupt threshold control. The system software uses this field to set the maximum rate at which the host/device controller will issue interrupts. ITC contains the maximum interrupt interval measured in micro-frames. Valid values are shown below. All other values are reserved. 0x0 = Immediate (no threshold) 0x1 = 1 micro frame. 0x2 = 2 micro frames. 0x8 = 8 micro frames. 0x10 = 16 micro frames. 0x20 = 32 micro frames. 0x40 = 64 micro frames."]
    #[inline]
    pub fn itc(&mut self) -> _ITCW {
        _ITCW { w: self }
    }
}