1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::DMA_OP_MODE {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct SRR {
    bits: bool,
}
impl SRR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct OSFR {
    bits: bool,
}
impl OSFR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RTCR {
    bits: u8,
}
impl RTCR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct FUFR {
    bits: bool,
}
impl FUFR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct FEFR {
    bits: bool,
}
impl FEFR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct STR {
    bits: bool,
}
impl STR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct TTCR {
    bits: u8,
}
impl TTCR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct FTFR {
    bits: bool,
}
impl FTFR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct DFFR {
    bits: bool,
}
impl DFFR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Proxy"]
pub struct _SRW<'a> {
    w: &'a mut W,
}
impl<'a> _SRW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _OSFW<'a> {
    w: &'a mut W,
}
impl<'a> _OSFW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 2;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RTCW<'a> {
    w: &'a mut W,
}
impl<'a> _RTCW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 3;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _FUFW<'a> {
    w: &'a mut W,
}
impl<'a> _FUFW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 6;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _FEFW<'a> {
    w: &'a mut W,
}
impl<'a> _FEFW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 7;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _STW<'a> {
    w: &'a mut W,
}
impl<'a> _STW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 13;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _TTCW<'a> {
    w: &'a mut W,
}
impl<'a> _TTCW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 7;
        const OFFSET: u8 = 14;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _FTFW<'a> {
    w: &'a mut W,
}
impl<'a> _FTFW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 20;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _DFFW<'a> {
    w: &'a mut W,
}
impl<'a> _DFFW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 24;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 1 - Start/stop receive When this bit is set, the Receive process is placed in the Running state. The DMA attempts to acquire the descriptor from the Receive list and processes incoming frames. Descriptor acquisition is attempted from the current position in the list, which is the address set by the DMA_REC_DES_ADDR register or the position retained when the Receive process was previously stopped. If no descriptor is owned by the DMA, reception is suspended and Receive Buffer Unavailable bit (bit 7 in DMA_STAT register) is set. The Start Receive command is effective only when reception has stopped. If the command was issued before setting the DMA_REC_DES_ADDR, DMA behavior is unpredictable."]
    #[inline]
    pub fn sr(&self) -> SRR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SRR { bits }
    }
    #[doc = "Bit 2 - Operate on second frame When this bit is set, this bit instructs the DMA to process a second frame of Transmit data even before status for first frame is obtained."]
    #[inline]
    pub fn osf(&self) -> OSFR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 2;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        OSFR { bits }
    }
    #[doc = "Bits 3:4 - Receive threshold control These two bits control the threshold level of the MTL Receive FIFO. Transfer (request) to DMA starts when the frame size within the MTL Receive FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are transferred automatically. These bits are valid only when the RSF bit is zero, and are ignored when the RSF bit is set to 1. 00 = 64 01 = 32 10 = 96 11 = 128"]
    #[inline]
    pub fn rtc(&self) -> RTCR {
        let bits = {
            const MASK: u8 = 3;
            const OFFSET: u8 = 3;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RTCR { bits }
    }
    #[doc = "Bit 6 - Forward undersized good frames When set, the Rx FIFO will forward Undersized frames (frames with no Error and length less than 64 bytes) including pad-bytes and CRC). When reset, the Rx FIFO will drop all frames of less than 64 bytes, unless it is already transferred due to lower value of Receive Threshold (e.g., RTC = 01)."]
    #[inline]
    pub fn fuf(&self) -> FUFR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 6;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        FUFR { bits }
    }
    #[doc = "Bit 7 - Forward error frames When this bit is reset, the Rx FIFO drops frames with error status (CRC error, collision error, , watchdog timeout, overflow). However, if the frame's start byte (write) pointer is already transferred to the read controller side (in Threshold mode), then the frames are not dropped. When FEF is set, all frames except runt error frames are forwarded to the DMA. But when RxFIFO overflows when a partial frame is written, then such frames are dropped even when FEF is set."]
    #[inline]
    pub fn fef(&self) -> FEFR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 7;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        FEFR { bits }
    }
    #[doc = "Bit 13 - Start/Stop Transmission Command When this bit is set, transmission is placed in the Running state, and the DMA checks the Transmit List at the current position for a frame to be transmitted. Descriptor acquisition is attempted either from the current position in the list, which is the Transmit List Base Address set by the DMA_TRANS_DES_ADDR register or from the position retained when transmission was stopped previously. If the current descriptor is not owned by the DMA, transmission enters the Suspended state and Transmit Buffer Unavailable (DMA_STAT register, bit 2) is set. The Start Transmission command is effective only when transmission is stopped. If the command is issued before setting the DMA_TRANS_DES_ADDR register, then the DMA behavior is unpredictable. When this bit is reset, the transmission process is placed in the Stopped state after completing the transmission of the current frame. The Next Descriptor position in the Transmit List is saved, and becomes the current position when transmission is restarted. The stop transmission command is effective only the transmission of the current frame is complete or when the transmission is in the Suspended state."]
    #[inline]
    pub fn st(&self) -> STR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 13;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        STR { bits }
    }
    #[doc = "Bits 14:16 - Transmit threshold control These three bits control the threshold level of the MTL Transmit FIFO. Transmission starts when the frame size within the MTL Transmit FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are also transmitted. These bits are used only when the TSF bit (Bit 21) is reset. 000 = 64 001 = 128 010 = 192 011 = 256 100 = 40 101 = 32 110 = 24 111 = 16"]
    #[inline]
    pub fn ttc(&self) -> TTCR {
        let bits = {
            const MASK: u8 = 7;
            const OFFSET: u8 = 14;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        TTCR { bits }
    }
    #[doc = "Bit 20 - Flush transmit FIFO This register field can be read by the application (Read), can be set to 1 by the application with a register write of 1 (Write Set), and is cleared to 0 by the Ethernet core (Self Clear). The application cannot clear this type of field, and a register write of 0 to this bit has no effect on this field. When this bit is set, the transmit FIFO controller logic is reset to its default values and thus all data in the Tx FIFO is lost/flushed. This bit is cleared internally when the flushing operation is completed fully. The Operation Mode register should not be written to until this bit is cleared. The data which is already accepted by the MAC transmitter will not be flushed. It will be scheduled for transmission and will result in underflow and runt frame transmission. The flush operation completes only after emptying the TxFIFO of its contents and all the pending Transmit Status of the transmitted frames are accepted by the host. In order to complete this flush operation, the PHY transmit clock is required to be active."]
    #[inline]
    pub fn ftf(&self) -> FTFR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 20;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        FTFR { bits }
    }
    #[doc = "Bit 24 - Disable flushing of received frames When this bit is set, the RxDMA does not flush any frames due to the unavailability of receive descriptors/buffers as it does normally when this bit is reset. (See)."]
    #[inline]
    pub fn dff(&self) -> DFFR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 24;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        DFFR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 0 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 1 - Start/stop receive When this bit is set, the Receive process is placed in the Running state. The DMA attempts to acquire the descriptor from the Receive list and processes incoming frames. Descriptor acquisition is attempted from the current position in the list, which is the address set by the DMA_REC_DES_ADDR register or the position retained when the Receive process was previously stopped. If no descriptor is owned by the DMA, reception is suspended and Receive Buffer Unavailable bit (bit 7 in DMA_STAT register) is set. The Start Receive command is effective only when reception has stopped. If the command was issued before setting the DMA_REC_DES_ADDR, DMA behavior is unpredictable."]
    #[inline]
    pub fn sr(&mut self) -> _SRW {
        _SRW { w: self }
    }
    #[doc = "Bit 2 - Operate on second frame When this bit is set, this bit instructs the DMA to process a second frame of Transmit data even before status for first frame is obtained."]
    #[inline]
    pub fn osf(&mut self) -> _OSFW {
        _OSFW { w: self }
    }
    #[doc = "Bits 3:4 - Receive threshold control These two bits control the threshold level of the MTL Receive FIFO. Transfer (request) to DMA starts when the frame size within the MTL Receive FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are transferred automatically. These bits are valid only when the RSF bit is zero, and are ignored when the RSF bit is set to 1. 00 = 64 01 = 32 10 = 96 11 = 128"]
    #[inline]
    pub fn rtc(&mut self) -> _RTCW {
        _RTCW { w: self }
    }
    #[doc = "Bit 6 - Forward undersized good frames When set, the Rx FIFO will forward Undersized frames (frames with no Error and length less than 64 bytes) including pad-bytes and CRC). When reset, the Rx FIFO will drop all frames of less than 64 bytes, unless it is already transferred due to lower value of Receive Threshold (e.g., RTC = 01)."]
    #[inline]
    pub fn fuf(&mut self) -> _FUFW {
        _FUFW { w: self }
    }
    #[doc = "Bit 7 - Forward error frames When this bit is reset, the Rx FIFO drops frames with error status (CRC error, collision error, , watchdog timeout, overflow). However, if the frame's start byte (write) pointer is already transferred to the read controller side (in Threshold mode), then the frames are not dropped. When FEF is set, all frames except runt error frames are forwarded to the DMA. But when RxFIFO overflows when a partial frame is written, then such frames are dropped even when FEF is set."]
    #[inline]
    pub fn fef(&mut self) -> _FEFW {
        _FEFW { w: self }
    }
    #[doc = "Bit 13 - Start/Stop Transmission Command When this bit is set, transmission is placed in the Running state, and the DMA checks the Transmit List at the current position for a frame to be transmitted. Descriptor acquisition is attempted either from the current position in the list, which is the Transmit List Base Address set by the DMA_TRANS_DES_ADDR register or from the position retained when transmission was stopped previously. If the current descriptor is not owned by the DMA, transmission enters the Suspended state and Transmit Buffer Unavailable (DMA_STAT register, bit 2) is set. The Start Transmission command is effective only when transmission is stopped. If the command is issued before setting the DMA_TRANS_DES_ADDR register, then the DMA behavior is unpredictable. When this bit is reset, the transmission process is placed in the Stopped state after completing the transmission of the current frame. The Next Descriptor position in the Transmit List is saved, and becomes the current position when transmission is restarted. The stop transmission command is effective only the transmission of the current frame is complete or when the transmission is in the Suspended state."]
    #[inline]
    pub fn st(&mut self) -> _STW {
        _STW { w: self }
    }
    #[doc = "Bits 14:16 - Transmit threshold control These three bits control the threshold level of the MTL Transmit FIFO. Transmission starts when the frame size within the MTL Transmit FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are also transmitted. These bits are used only when the TSF bit (Bit 21) is reset. 000 = 64 001 = 128 010 = 192 011 = 256 100 = 40 101 = 32 110 = 24 111 = 16"]
    #[inline]
    pub fn ttc(&mut self) -> _TTCW {
        _TTCW { w: self }
    }
    #[doc = "Bit 20 - Flush transmit FIFO This register field can be read by the application (Read), can be set to 1 by the application with a register write of 1 (Write Set), and is cleared to 0 by the Ethernet core (Self Clear). The application cannot clear this type of field, and a register write of 0 to this bit has no effect on this field. When this bit is set, the transmit FIFO controller logic is reset to its default values and thus all data in the Tx FIFO is lost/flushed. This bit is cleared internally when the flushing operation is completed fully. The Operation Mode register should not be written to until this bit is cleared. The data which is already accepted by the MAC transmitter will not be flushed. It will be scheduled for transmission and will result in underflow and runt frame transmission. The flush operation completes only after emptying the TxFIFO of its contents and all the pending Transmit Status of the transmitted frames are accepted by the host. In order to complete this flush operation, the PHY transmit clock is required to be active."]
    #[inline]
    pub fn ftf(&mut self) -> _FTFW {
        _FTFW { w: self }
    }
    #[doc = "Bit 24 - Disable flushing of received frames When this bit is set, the RxDMA does not flush any frames due to the unavailability of receive descriptors/buffers as it does normally when this bit is reset. (See)."]
    #[inline]
    pub fn dff(&mut self) -> _DFFW {
        _DFFW { w: self }
    }
}