1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! This module provides the interface to different solvers.
//!
//! Both [`coin_cbc`](https://docs.rs/coin_cbc/latest/coin_cbc/) and
//! [`minilp`](https://docs.rs/minilp/0.2.2/minilp/) are available as cargo
//! [features](https://doc.rust-lang.org/cargo/reference/features.html). To use
//! them, specify your dependency to `lp_modeler` accordingly in your `Cargo.toml`
//! (note the name difference of the `native_coin_cbc` feature for the `coin_cbc` crate):
//! ```toml
//! [dependencies.lp_modeler]
//! version = "4.3"
//! features = "native_coin_cbc"
//! ```
//! or:
//! ```toml
//! [dependencies.lp_modeler]
//! version = "4.3"
//! features = "minilp"
//! ```
//! For `coin_cbc` to compile, the `Cbc` library files need to be available on your system.
//! See the [`coin_cbc` project README](https://github.com/KardinalAI/coin_cbc) for more infos.
//!
//! The other solvers need to be installed externally on your system.
//! The respective information is provided in the project's README in the section on
//! [installing external solvers](https://github.com/jcavat/rust-lp-modeler#installing-external-solvers).

use std::collections::HashMap;
use std::ffi::OsString;
use std::fs::File;
use std::marker::PhantomData;
use std::path::{Path, PathBuf};
use std::process::Command;

use crate::lp_format::LpProblem;

pub use self::auto::*;
pub use self::cbc::*;
#[cfg(feature = "cplex")]
pub use self::cplex::*;
pub use self::glpk::*;
pub use self::gurobi::*;

pub mod auto;
pub mod cbc;
#[cfg(feature = "cplex")]
pub mod cplex;
pub mod glpk;
pub mod gurobi;

/// Solution status
#[derive(Debug, PartialEq, Clone)]
pub enum Status {
    /// the best possible solution was found
    Optimal,
    /// A solution was found; it may not be the best one.
    SubOptimal,
    /// There is no solution for the problem
    Infeasible,
    /// There is no single finite optimum for the problem
    Unbounded,
    /// Unable to solve
    NotSolved,
}

/// A solution to a problem
#[derive(Debug, Clone)]
pub struct Solution {
    /// solution state
    pub status: Status,
    /// map from variable name to variable value
    pub results: HashMap<String, f32>,
}

impl Solution {
    /// Create a solution
    pub fn new(status: Status, results: HashMap<String, f32>) -> Solution {
        Solution { status, results }
    }
}

/// A solver that can take a problem and return a solution
pub trait SolverTrait {
    /// Run the solver on the given problem
    fn run<'a, P: LpProblem<'a>>(&self, problem: &'a P) -> Result<Solution, String>;
}

/// An external commandline solver
pub trait SolverProgram {
    /// Returns the commandline program name
    fn command_name(&self) -> &str;
    /// Returns the commandline arguments
    fn arguments(&self, lp_file: &Path, solution_file: &Path) -> Vec<OsString>;
    /// If there is a predefined solution filename
    fn preferred_temp_solution_file(&self) -> Option<&Path> {
        None
    }
    /// Parse the output of the program
    fn parse_stdout_status(&self, _stdout: &[u8]) -> Option<Status> {
        None
    }
    /// A suffix the solution file must have
    fn solution_suffix(&self) -> Option<&str> {
        None
    }
}

/// A solver that can parse a solution file
pub trait SolverWithSolutionParsing {
    /// Use read_solution_from_path instead.
    #[deprecated]
    fn read_solution<'a, P: LpProblem<'a>>(
        &self,
        temp_solution_file: &str,
        problem: Option<&'a P>,
    ) -> Result<Solution, String> {
        Self::read_solution_from_path(self, &PathBuf::from(temp_solution_file), problem)
    }
    /// Read a solution
    fn read_solution_from_path<'a, P: LpProblem<'a>>(
        &self,
        temp_solution_file: &Path,
        problem: Option<&'a P>,
    ) -> Result<Solution, String> {
        match File::open(temp_solution_file) {
            Ok(f) => {
                let res = self.read_specific_solution(&f, problem)?;
                Ok(res)
            }
            Err(e) => Err(format!(
                "Cannot open solution file {:?}: {}",
                temp_solution_file, e
            )),
        }
    }
    /// Read a solution from a file
    fn read_specific_solution<'a, P: LpProblem<'a>>(
        &self,
        f: &File,
        problem: Option<&'a P>,
    ) -> Result<Solution, String>;
}

impl<T: SolverWithSolutionParsing + SolverProgram> SolverTrait for T {
    fn run<'a, P: LpProblem<'a>>(&self, problem: &'a P) -> Result<Solution, String> {
        let command_name = self.command_name();
        let file_model = problem
            .to_tmp_file()
            .map_err(|e| format!("Unable to create {} problem file: {}", command_name, e))?;

        let temp_solution_file = if let Some(p) = self.preferred_temp_solution_file() {
            PathBuf::from(p)
        } else {
            let mut builder = tempfile::Builder::new();
            if let Some(suffix) = self.solution_suffix() {
                builder.suffix(suffix);
            }
            PathBuf::from(builder.tempfile().map_err(|e| e.to_string())?.path())
        };
        let arguments = self.arguments(file_model.path(), &temp_solution_file);

        let output = Command::new(command_name)
            .args(arguments)
            .output()
            .map_err(|e| format!("Error while running {}: {}", command_name, e))?;

        if !output.status.success() {
            return Err(format!(
                "{} exited with status {}",
                command_name, output.status
            ));
        }
        match self.parse_stdout_status(&output.stdout) {
            Some(Status::Infeasible) => Ok(Solution::new(Status::Infeasible, Default::default())),
            Some(Status::Unbounded) => Ok(Solution::new(Status::Unbounded, Default::default())),
            status_hint => {
                let mut solution = self
                    .read_solution_from_path(&temp_solution_file, Some(problem))
                    .map_err(|e| {
                        format!(
                            "{}. Solver output: {}",
                            e,
                            std::str::from_utf8(&output.stdout).unwrap_or("Invalid UTF8")
                        )
                    })?;
                if let Some(status) = status_hint {
                    solution.status = status;
                }
                Ok(solution)
            }
        }
    }
}

/// Configure the max allowed runtime
pub trait WithMaxSeconds<T> {
    /// get max runtime
    fn max_seconds(&self) -> Option<u32>;
    /// set max runtime
    fn with_max_seconds(&self, seconds: u32) -> T;
}

/// A solver where the parallelism can be configured
pub trait WithNbThreads<T> {
    /// get thread count
    fn nb_threads(&self) -> Option<u32>;
    /// set thread count
    fn with_nb_threads(&self, threads: u32) -> T;
}

/// A static version of a solver, where the solver itself doesn't hold any data
///
/// ```
/// use lp_solvers::solvers::{StaticSolver, CbcSolver};
/// const STATIC_SOLVER : StaticSolver<CbcSolver> = StaticSolver::new();
/// ```
#[derive(Default, Copy, Clone)]
pub struct StaticSolver<T>(PhantomData<T>);

impl<T> StaticSolver<T> {
    /// Create a new static solver
    pub const fn new() -> Self {
        StaticSolver(PhantomData)
    }
}

impl<T: SolverTrait + Default> SolverTrait for StaticSolver<T> {
    fn run<'a, P: LpProblem<'a>>(&self, problem: &'a P) -> Result<Solution, String> {
        let solver = T::default();
        SolverTrait::run(&solver, problem)
    }
}