1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! # logos-nom-bridge
//!
//! A [`logos::Lexer`] wrapper than can be used as an input for
//! [nom](https://docs.rs/nom/7.0.0/nom/index.html).
//!
//! ### Simple example
//!
//! ```
//! // First, create a `logos` lexer:
//!
//! #[derive(Clone, Debug, PartialEq, Eq, logos::Logos)]
//! enum Token {
//!     #[token("+")]
//!     Plus,
//!
//!     #[token("-")]
//!     Minus,
//!
//!     #[regex(r"-?[0-9]+", |lex| lex.slice().parse())]
//!     Number(i64),
//!
//!     #[error]
//!     #[regex(r"[ \t\n\f]+", logos::skip)]
//!     Error,
//! }
//!
//! // Then, write a nom parser that accepts a `Tokens<'_, Token>` as input:
//!
//! use logos_nom_bridge::Tokens;
//!
//! type Input<'source> = Tokens<'source, Token>;
//!
//! #[derive(Debug, PartialEq, Eq)]
//! enum Op {
//!     Number(i64),
//!     Addition(Box<(Op, Op)>),
//!     Subtraction(Box<(Op, Op)>),
//! }
//!
//! fn parse_expression(input: Input<'_>) -> nom::IResult<Input<'_>, Op> {
//! #   use nom::{branch::alt, combinator::map, sequence::tuple};
//! #
//! #   fn parse_number(input: Input<'_>) -> nom::IResult<Input<'_>, Op> {
//! #       match input.peek() {
//! #           Some((Token::Number(n), _)) => Ok((input.advance(), Op::Number(n))),
//! #           _ => Err(nom::Err::Error(nom::error::Error::new(
//! #               input,
//! #               nom::error::ErrorKind::IsA,
//! #           ))),
//! #       }
//! #   }
//! #   logos_nom_bridge::token_parser!(token: Token);
//! #
//! #   alt((
//! #       map(
//! #           tuple((parse_number, alt((Token::Plus, Token::Minus)), parse_expression)),
//! #           |(a, op, b)| {
//! #               if op == "+" {
//! #                   Op::Addition(Box::new((a, b)))
//! #               } else {
//! #                   Op::Subtraction(Box::new((a, b)))
//! #               }
//! #           },
//! #       ),
//! #       parse_number,
//! #   ))(input)
//!     // zip
//! }
//!
//! // Finally, you can use it to parse a string:
//!
//! let input = "10 + 3 - 4";
//! let tokens = Tokens::new(input);
//!
//! let (rest, parsed) = parse_expression(tokens).unwrap();
//!
//! assert!(rest.is_empty());
//! assert_eq!(
//!     parsed,
//!     Op::Addition(Box::new((
//!         Op::Number(10),
//!         Op::Subtraction(Box::new((
//!             Op::Number(3),
//!             Op::Number(4),
//!         ))),
//!     ))),
//! )
//! ```
//!
//! ## Macros
//!
//! You can implement [`nom::Parser`] for your token type with the [`token_parser`] macro:
//!
//! ```
//! # #[derive(Clone, Debug, PartialEq, Eq, logos::Logos)]
//! # enum Token {
//! #     #[error]
//! #     Error,
//! # }
//! #
//! logos_nom_bridge::token_parser!(token: Token);
//! ```
//!
//! If some enum variants of your token type contain data, you can implement a [`nom::Parser`]
//! for them using the [`data_variant_parser`] macro:
//!
//! ```
//! # enum Op { Number(i64) }
//! #
//! #[derive(Clone, Debug, PartialEq, Eq, logos::Logos)]
//! enum Token {
//!     #[regex(r"-?[0-9]+", |lex| lex.slice().parse())]
//!     Number(i64),
//!
//!     // etc.
//! #   #[error]
//! #   Error,
//! }
//!
//! logos_nom_bridge::data_variant_parser! {
//!     fn parse_number(input) -> Result<Op>;
//!     pattern = Token::Number(n) => Op::Number(n);
//! }
//! ```

mod macros;

use core::fmt;

use logos::{Lexer, Logos, Span, SpannedIter};
use nom::{InputIter, InputLength, InputTake};

/// A [`logos::Lexer`] wrapper than can be used as an input for
/// [nom](https://docs.rs/nom/7.0.0/nom/index.html).
///
/// You can find an example in the [module-level docs](..).
pub struct Tokens<'i, T>
where
    T: Logos<'i>,
{
    lexer: Lexer<'i, T>,
}

impl<'i, T> Clone for Tokens<'i, T>
where
    T: Logos<'i> + Clone,
    T::Extras: Clone,
{
    fn clone(&self) -> Self {
        Self {
            lexer: self.lexer.clone(),
        }
    }
}

impl<'i, T> Tokens<'i, T>
where
    T: Logos<'i, Source = str> + Clone,
    T::Extras: Default + Clone,
{
    pub fn new(input: &'i str) -> Self {
        Tokens {
            lexer: Lexer::new(input),
        }
    }

    pub fn len(&self) -> usize {
        self.lexer.source().len() - self.lexer.span().end
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub fn peek(&self) -> Option<(T, &'i str)> {
        let mut iter = self.lexer.clone().spanned();
        iter.next().map(|(t, span)| (t, &self.lexer.source()[span]))
    }

    pub fn advance(mut self) -> Self {
        self.lexer.next();
        self
    }
}

impl<'i, T> PartialEq for Tokens<'i, T>
where
    T: PartialEq + Logos<'i> + Clone,
    T::Extras: Clone,
{
    fn eq(&self, other: &Self) -> bool {
        Iterator::eq(self.lexer.clone(), other.lexer.clone())
    }
}

impl<'i, T> Eq for Tokens<'i, T>
where
    T: Eq + Logos<'i> + Clone,
    T::Extras: Clone,
{
}

impl<'i, T> fmt::Debug for Tokens<'i, T>
where
    T: fmt::Debug + Logos<'i, Source = str>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let source = self.lexer.source();
        let start = self.lexer.span().start;
        f.debug_tuple("Tokens").field(&&source[start..]).finish()
    }
}

impl<'i, T> Default for Tokens<'i, T>
where
    T: Logos<'i, Source = str>,
    T::Extras: Default,
{
    fn default() -> Self {
        Tokens {
            lexer: Lexer::new(""),
        }
    }
}

/// An iterator, that (similarly to [`std::iter::Enumerate`]) produces byte offsets of the tokens.
pub struct IndexIterator<'i, T>
where
    T: Logos<'i>,
{
    logos: Lexer<'i, T>,
}

impl<'i, T> Iterator for IndexIterator<'i, T>
where
    T: Logos<'i>,
{
    type Item = (usize, (T, Span));

    fn next(&mut self) -> Option<Self::Item> {
        self.logos.next().map(|t| {
            let span = self.logos.span();
            (span.start, (t, span))
        })
    }
}

impl<'i, T> InputIter for Tokens<'i, T>
where
    T: Logos<'i, Source = str> + Clone,
    T::Extras: Default + Clone,
{
    type Item = (T, Span);

    type Iter = IndexIterator<'i, T>;

    type IterElem = SpannedIter<'i, T>;

    fn iter_indices(&self) -> Self::Iter {
        IndexIterator {
            logos: self.lexer.clone(),
        }
    }

    fn iter_elements(&self) -> Self::IterElem {
        self.lexer.clone().spanned()
    }

    fn position<P>(&self, predicate: P) -> Option<usize>
    where
        P: Fn(Self::Item) -> bool,
    {
        let mut iter = self.lexer.clone().spanned();
        iter.find(|t| predicate(t.clone()))
            .map(|(_, span)| span.start)
    }

    fn slice_index(&self, count: usize) -> Result<usize, nom::Needed> {
        let mut cnt = 0;
        for (_, span) in self.lexer.clone().spanned() {
            if cnt == count {
                return Ok(span.start);
            }
            cnt += 1;
        }
        if cnt == count {
            return Ok(self.len());
        }
        Err(nom::Needed::Unknown)
    }
}

impl<'i, T> InputLength for Tokens<'i, T>
where
    T: Logos<'i, Source = str> + Clone,
    T::Extras: Default + Clone,
{
    fn input_len(&self) -> usize {
        self.len()
    }
}

impl<'i, T> InputTake for Tokens<'i, T>
where
    T: Logos<'i, Source = str>,
    T::Extras: Default,
{
    fn take(&self, count: usize) -> Self {
        Tokens {
            lexer: Lexer::new(&self.lexer.source()[..count]),
        }
    }

    fn take_split(&self, count: usize) -> (Self, Self) {
        let (a, b) = self.lexer.source().split_at(count);
        (
            Tokens {
                lexer: Lexer::new(a),
            },
            Tokens {
                lexer: Lexer::new(b),
            },
        )
    }
}