1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
use crate::numerics::ode_solvers as ode;
use crate::reaction::gas::Gas;
use crate::reaction::combustion::{Combustion};
use crate::engine::json_reader::{JsonEngine, JsonCylinder, JsonValve};
use crate::engine::engine::Injector;
use crate::core::traits::{ZeroDim, SaveData, ZeroD};
use crate::{BasicProperties, FlowRatio};
use ansi_term::Style;
use ndarray::*;
use std::f64::consts::PI;
use std::io::Write;

/// Zero-Dimensional struct representing the cylinder of an engine. 
pub struct Cylinder {
    name: String,
    gas: Gas,
    mass: f64,       // [kg]
    volume: f64,     // [m³] - instant volume as function of crank angle
    angle: f64,      // [CA deg] - instant crank angle
    speed: f64,      // [RPS]
    fuel_mass: f64,  // [kg]
    sec_to_rad: f64, // constant: 2*PI*speed
    geometry: Geometry,
    crankshaft: Crankshaft,
    piston: Piston,
    head: Head,
    heat_transfer: HeatTransfer,
    injector: Option<Injector>,
    combustion: Box<dyn Combustion>,
    int_valves: ValvesInfo,
    exh_valves: ValvesInfo,
    open_phase_start: bool,
    closed_phase_start: bool,
    store_species: bool,
    total_injected_fuel: f64,
    total_fresh_charge: f64,
    closed_phase_mass: f64,
    residual_mass_frac: f64,

    // blow_by: bool,
    // crevice: bool,
}

impl Cylinder {
    /// Creates a cylinder object. Inputs units must be: `mm`, `RPM` and `CA deg`.
    pub fn new(
        name: String,
        ini_angle: f64,
        engine_info: &JsonEngine,
        cylinder_info: &JsonCylinder,
        int_valves_info: &Vec<JsonValve>,
        exh_valves_info: &Vec<JsonValve>,
        combustion: Box<dyn Combustion>,
        injector: Option<Injector>,
        gas: &Gas,
    ) -> Result<Cylinder, String> {
        if engine_info.bore < 0.0 {
            return Err(format!("diameter cannot be lower than zero"));
        } else if engine_info.displacement < 0.0 {
            return Err(format!("displacement cannot be lower than zero"));
        } else if cylinder_info.compression_ratio < 0.0 {
            return Err(format!("compration ratio cannot be lower than zero"));
        } else if engine_info.speed < 0.0 {
            return Err(format!("engine speed cannot be lower than zero"));
        }

        // In SI uinits
        let speed = engine_info.speed;
        let conrod = engine_info.conrod * 1e-3; // [m]
        let eccentricity = engine_info.eccentricity * 1e-3; // [m]
        let diam = engine_info.bore * 1e-3; // [m]
        let displ = engine_info.displacement;
        let comp_ratio = cylinder_info.compression_ratio;
        let wall_temp = cylinder_info.wall_temperature; // [K] - Common value
        let geometry = Geometry::new(diam, displ * 1e-6, comp_ratio, wall_temp);
        let crank = 0.5 * geometry.stroke; //standard value
        let angle_tdc = (eccentricity / (conrod + crank)).asin(); // crank angle [deg] of the top-dead-center
        let crankshaft = Crankshaft::new(conrod, crank, eccentricity, angle_tdc);
        let piston = Piston::new(geometry.stroke, diam, wall_temp, speed);
        let head = Head {
            temperature: wall_temp,
            area: geometry.transverse_area,
        };
        let (volume, _) = Cylinder::calc_volume(&geometry, &crankshaft, ini_angle.to_radians());

        // instantiating valves
        let intake_gas_comp = "O2:0.21, N2:0.79".to_string();
        let exhaust_gas_comp = "N2:0.662586, H2O:0.202449, CO2:0.134965".to_string();
        let mut intake_valves_info = Vec::new();
        let mut exhaust_valves_info = Vec::new();
        for v in int_valves_info {
            intake_valves_info.push(ValveBasicInfo::new(v.name.clone(), v.opening_angle, v.closing_angle))
        }
        for v in exh_valves_info {
            exhaust_valves_info.push(ValveBasicInfo::new(v.name.clone(), v.opening_angle, v.closing_angle))
        }

        let int_valves = ValvesInfo::new(intake_valves_info, intake_gas_comp.clone());
        let exh_valves = ValvesInfo::new(exhaust_valves_info, exhaust_gas_comp.clone());

        let store_species = match cylinder_info.store_species {
            Some(s) => s,
            None => false,
        };

        Ok(Cylinder {
            name,
            gas: gas.clone(),
            mass: gas.P() * volume / (gas.R() * gas.T()),
            volume,
            angle: (ini_angle.to_radians() - crankshaft.angle_tdc),
            speed: speed / 60.0,
            fuel_mass: 0.0,
            sec_to_rad: 2.0 * PI * speed / 60.0,
            geometry,
            crankshaft,
            piston,
            head,
            heat_transfer: HeatTransfer {},
            combustion,
            injector,
            int_valves,
            exh_valves,
            open_phase_start: false,
            closed_phase_start: false,
            store_species,
            total_injected_fuel: 0.0,
            total_fresh_charge: 0.0,
            closed_phase_mass: 0.0,
            residual_mass_frac: 0.0,
        })
    }
    /// Returns the instant volume and volume's derivative with crank angle radian, respectively.
    /// Input `angle` must be in radian.
    /// Outputs are `m³` and `m³/CA-rad`
    fn calc_volume(geometry: &Geometry, crankshaft: &Crankshaft, angle: f64) -> (f64, f64) {
        let angle = angle - crankshaft.angle_tdc;
        let sin_gama =
            (crankshaft.crank * angle.sin() - crankshaft.eccentricity) / crankshaft.conrod;
        let cos_gama = (1.0 - sin_gama * sin_gama).sqrt();
        let piston_position = crankshaft.mech_total_length
            - crankshaft.crank * angle.cos()
            - crankshaft.conrod * cos_gama;
        let volume = geometry.transverse_area * piston_position + geometry.clearance;
        let tmp = (crankshaft.crank / crankshaft.conrod) * (angle.cos() / cos_gama);
        let dpiston_position_dangle =
            crankshaft.crank * angle.sin() * (1.0 + tmp) - crankshaft.eccentricity * tmp;
        let d_volume = geometry.transverse_area * dpiston_position_dangle;
        (volume, d_volume)
    }

    /// `d_angle` in crank angle radians
    fn closed_phase(&mut self, d_angle: f64) -> (f64, f64, f64, f64, Array1<f64>) {
        // Closed Phase -----------------------------------------------------------
        if let Some(inj) = &mut self.injector {
            if inj.inj_type() == "port" {
                if self.fuel_mass == 0.0 {
                    self.fuel_mass = inj.injected_fuel();
                    self.total_injected_fuel = self.fuel_mass;
                    self.closed_phase_mass = self.mass; 
                    let backflow = self.int_valves.get_backflow();
                    self.residual_mass_frac = 1.0 - (self.total_fresh_charge - backflow)/self.mass;
                    self.total_fresh_charge = 0.0;
                } else {
                    inj.set_injected_fuel(0.0);
                }
            } else if inj.inj_type() == "direct" {
                if self.fuel_mass == 0.0 {
                    self.fuel_mass = inj.calc_direct_injected_fuel(0.0);
                    self.total_injected_fuel = self.fuel_mass;
                    self.closed_phase_mass = self.mass;
                    let backflow = self.int_valves.get_backflow();
                    self.residual_mass_frac = 1.0 - (self.total_fresh_charge - backflow)/self.mass;
                    self.total_fresh_charge = 0.0;
                } else {
                    inj.set_injected_fuel(0.0);
                }
            }
        } else {
            self.closed_phase_mass = self.mass;
            self.total_fresh_charge = 0.0;
        }
        
        let heat_combustion = self.combustion.get_heat_release_rate(&self.gas, self.fuel_mass, self.angle);
        let const_1 = 1.0 / (self.mass * self.gas.cv());
        let closed_phase_equations = |angle: &f64, x: &Array1<f64>, _: &Vec<f64>| -> Array1<f64> {
            // x[0] = P
            let (vol, d_vol) = Cylinder::calc_volume(&self.geometry, &self.crankshaft, *angle);    
            let temp = x[0]*vol/(self.mass*self.gas.R());
            let heat_transfer = self.heat_transfer.calculate(vol, temp, x[0], &self); // [J/s]
            let heat_transfer = heat_transfer / self.sec_to_rad; // [J/CA radian]
            let d_temp = const_1 * (heat_combustion + heat_transfer - x[0] * d_vol); // [K/CA radian]
            let d_press = x[0] * (d_temp / temp - d_vol / vol); // [Pa/CA radian]
            array![d_press]
        };
        let ini = array![self.gas.P()];

        let closed_phase_integrated = ode::rk4_step(
            closed_phase_equations,
            &ini,
            &Vec::new(),
            &self.angle,
            d_angle,
        );

        // let temp = closed_phase_integrated[0];  
        let press = closed_phase_integrated[0];       
        let (vol, _) = Cylinder::calc_volume(&self.geometry, &self.crankshaft, self.angle + d_angle);
        let temp = press*vol/(self.mass*self.gas.R());

        // Estimating final compositions:
        let mole_frac = self.combustion.update_composition(&mut self.gas, self.mass, self.angle + d_angle, press, vol);
        ( temp, press, self.mass, vol, mole_frac )
    }

    /// `d_angle` in crank angle radians
    fn open_phase(&mut self, d_angle: f64) -> (f64, f64, f64, f64, Array1<f64>) {
        // Open Phase -----------------------------------------------------------

        if !self.open_phase_start {
            // reseting back-flow
            self.int_valves.basic_info.iter_mut().for_each(|v| v.reset_back_flow());
            self.exh_valves.basic_info.iter_mut().for_each(|v| v.reset_back_flow());
            self.open_phase_start = true;
        }

        let cv = self.gas.cv();
        let cv_inv = 1.0 / cv;
        let mass_flow = (self.int_valves.flow_info.mass_flow + self.exh_valves.flow_info.mass_flow) / self.sec_to_rad; // [kg/CA radian]
        let enthalpy_flow = (self.int_valves.flow_info.enthalpy_flow + self.exh_valves.flow_info.enthalpy_flow) / self.sec_to_rad; // [J/kg/CA radian]
        let open_phase_equations = |angle: &f64, x: &Array1<f64>, _: &Vec<f64>| -> Array1<f64> {
            //x[0] = temperature, x[1] = mass
            let (vol, d_vol) = Cylinder::calc_volume(&self.geometry, &self.crankshaft, *angle);
            let press = x[1] * self.gas.R() * x[0] / vol;
            let heat_transfer = self.heat_transfer.calculate(vol, x[0], press, &self); // [J/s]
            let heat_transfer = heat_transfer / self.sec_to_rad; // [J/CA radian]
            let d_mass = mass_flow; // [kg/CA radian]
            let d_temp = cv_inv / x[1]
                * (heat_transfer - press * d_vol + enthalpy_flow - cv * x[0] * d_mass); // [K/CA radian]
            array![d_temp, d_mass]
        };

        // println!("mass flow: {}\t enthalpy flow: {}", mass_flow, enthalpy_flow);
        let ini_condition = array![self.gas.T(), self.mass];
        let open_phase_integrated = ode::rk4_step(
            open_phase_equations,
            &ini_condition,
            &Vec::new(),
            &self.angle,
            d_angle,
        );
        let temp = open_phase_integrated[0];
        let mass = open_phase_integrated[1];
        let (vol, _) = Cylinder::calc_volume(&self.geometry, &self.crankshaft, self.angle + d_angle);
        let press = mass * self.gas.R() * temp / vol;

        // Estimating final compositions:
        let dt = d_angle/self.sec_to_rad;

        // summing the fresh charge of all intake valves
        let mut fresh_charge_mass = 0.0; // kg
        self.int_valves.basic_info.iter_mut().for_each(|v| {
            fresh_charge_mass += v.get_charge(dt);
        });
        self.total_fresh_charge += fresh_charge_mass;

        // injecting fuel
        self.fuel_mass = 0.0;
        let fuel_mass: f64;
        let additional_mass: Vec<(f64, &str)>;
        if let Some(inj) = &mut self.injector {
            if inj.inj_type() == "port" {
                fuel_mass = inj.calc_port_injected_fuel(fresh_charge_mass);
            } else if inj.inj_type() == "direct" {
                fuel_mass = 0.0;
            } else {panic!("Unknown injector type!")}
            inj.set_injected_fuel(fuel_mass + inj.injected_fuel());
            additional_mass = vec![(fresh_charge_mass - fuel_mass, &self.int_valves.gas_comp), (fuel_mass, inj.fuel().composition())];
        } else {
            additional_mass = vec![(fresh_charge_mass, &self.int_valves.gas_comp)];
        }
        let new_mole_frac = self.gas.if_mixed_with(self.mass, additional_mass); 

        ( temp, press, mass, vol, new_mole_frac )
    }

    fn is_open_phase(&self) -> bool {
        if self.angle >= self.exh_valves.opening && self.angle <= self.int_valves.closing {
            true
        } else {false}
    }

    pub fn fuel_mass(&self) -> f64 {
        if let Some(_) = &self.injector {
            self.total_injected_fuel
        } else {
            0.0
        }
    }


    pub fn closed_phase_mass(&self) -> f64 {self.closed_phase_mass}

    pub fn residual_mass_frac(&self) -> f64 {self.residual_mass_frac}

    pub fn set_speed(&mut self, speed: f64) {
        if speed.is_sign_negative() {
            println!("Error at Cylinder::set_speed()");
            println!(" speed must be a positive value! {}", speed);
            std::process::exit(1);
        }
        self.speed = speed;
        self.sec_to_rad = 2.0 * PI * speed / 60.0;
        self.piston.mean_velocity = 2.0 * self.geometry.stroke * speed / 60.0;
    }

    pub fn set_displacement(&mut self, disp: f64) {
        if disp.is_sign_negative() {
            println!("Error at Cylinder::set_displacement()");
            println!(" displacement must be a positive value! {}", disp);
            std::process::exit(1);
        }
        self.geometry.displacement = disp;
        self.geometry.stroke = disp / self.geometry.transverse_area;
        self.geometry.clearance = disp / (self.geometry.compression_ratio - 1.0);
        self.geometry.total_volume = disp + self.geometry.clearance;
        self.piston.mean_velocity = 2.0 * self.geometry.stroke * self.speed;
    }

    pub fn set_compression_ratio(&mut self, comp_ratio: f64) {
        if comp_ratio.is_sign_negative() {
            println!("Error at Cylinder::set_compression_ratio()");
            println!(" compression ratio must be a positive value! {}", comp_ratio);
            std::process::exit(1);
        }
        self.geometry.compression_ratio = comp_ratio;
        self.geometry.clearance = self.geometry.displacement / (comp_ratio - 1.0);
        self.geometry.total_volume = self.geometry.displacement + self.geometry.clearance;
    }

    pub fn set_store_species(&mut self, state: bool) {
        self.store_species = state;
    }

    pub fn set_combustion_model(&mut self, comb: Box<dyn Combustion>) {
        self.combustion = comb;
    }

    /// Test the compression phase of a cylinder.
    pub fn _test_closed_phase(&mut self) {
        // setting up cylinder at bottle-dead-center
        self.angle = PI;    // BDC
        let (vol, _) = Cylinder::calc_volume(&self.geometry, &self.crankshaft, self.angle);
        self.volume = vol;

        // setting up the run 
        let d_angle:f64 = 0.01; // [CA deg]
        let limit = (180.0 / d_angle) as i32;
        let d_angle = d_angle.to_radians();
        let pvk = self.gas.P()*self.volume.powf(self.gas.k());
        let k = self.gas.k();
        println!("initial PV^K = {}", pvk);
        for _ in 0..limit {
            let new_prop = self.closed_phase(d_angle);
            let temp = new_prop.0;
            let press = new_prop.1;
            let mass = new_prop.2;
            let vol = new_prop.3;

            // update: T, P, V, angle, mass and composition
            self.angle = if self.angle + d_angle >= 4.0 * PI {
                self.angle + d_angle - 4.0 * PI
            } else {
                self.angle + d_angle
            };
            self.gas.TP(temp, press);
            self.mass = mass;
            self.volume = vol;
        }
        println!("max P = {}", pvk/self.volume.powf(k));
    }

    /// Estimates the cylinder volume and its derivative.
    pub fn _test_volume(&mut self) {
        println!("Running '{}' `_test_volume()` ", self.name());
        let d_angle = 0.1f64;
        let mut angle = 0.0f64;
        let mut result: Vec<String> = Vec::new();
        result.push(format!("crank-angle [deg]\tvolume [m³]\tdv [m³/CA-rad]\n"));
        for _ in 0..7200 {
            let (v, dv) =
                Cylinder::calc_volume(&self.geometry, &self.crankshaft, angle.to_radians());
            result.push(format!("{:.2}\t{}\t{}\n", angle, v, dv));
            angle +=d_angle
        }
        let mut file = std::fs::File::create("v_dv_test.txt").expect("Error opening writing file");
        write!(file, "{}", result.join("")).expect("Unable to write data");
        println!("Test fineshed!");
    }
}

impl ZeroDim for Cylinder {
    fn name<'a>(&'a self) -> &'a str {
        &self.name
    }
    fn get_state(&self) -> BasicProperties {
        BasicProperties {
            name: self.name(),
            pressure: self.gas.P(),
            temperature: self.gas.T(),
            cp: self.gas.cp(),
            cv: self.gas.cv(),
            cp_cv: self.gas.k(),
            gas_const: self.gas.R(),
            crank_angle: Some(self.angle),
        }
    }
    fn advance(&mut self, dt: f64) {
        let d_angle = dt * self.sec_to_rad; // [CA radian]
        let new_prop: (f64, f64, f64, f64, Array1<f64>);
        if !self.is_open_phase() {
            new_prop = self.closed_phase(d_angle);
            self.open_phase_start = false;
        } else {
            new_prop = self.open_phase(d_angle);
            self.closed_phase_start = false;
        }
        let temp = new_prop.0;
        let press = new_prop.1;
        let mass = new_prop.2;
        let vol = new_prop.3;
        let mole_frac = new_prop.4;

        // update: T, P, V, angle, mass and composition
        self.angle = if self.angle + d_angle >= 4.0 * PI {
            self.angle + d_angle - 4.0 * PI
        } else {
            self.angle + d_angle
        };
        self.gas.TPX_array(temp, press, &mole_frac);
        self.mass = mass;
        self.volume = vol;
    }

    fn update_flow_ratio(&mut self, total_flow_ratio: Vec<(&str, &FlowRatio)>) {

        // find intake valves
        let mut intake_flow_ratio = FlowRatio::new();
        for valve in self.int_valves.basic_info.iter_mut() {
            match total_flow_ratio.iter().find(|(name, _)| **name == valve.name) {
                Some((_,flow_ratio)) => {
                    valve.mass_flow = flow_ratio.mass_flow;
                    intake_flow_ratio = &intake_flow_ratio + flow_ratio;
                },
                None => {
                    println!("Error at Cylinder::update_flow_ratio()");
                    println!(" object {} is not connected to one of the objects:", valve.name);
                    for (name, _) in total_flow_ratio.iter() {
                        print!(" '{}'", name);
                    }
                    std::process::exit(1)
                }
            }
        }

        // find exhaust valves
        let mut exhaust_flow_ratio = FlowRatio::new();
        for valve in self.exh_valves.basic_info.iter_mut() {
            match total_flow_ratio.iter().find(|(name, _)| **name == valve.name) {
                Some((_,flow_ratio)) => {
                    valve.mass_flow = flow_ratio.mass_flow;
                    exhaust_flow_ratio = &exhaust_flow_ratio + flow_ratio;
                },
                None => {
                    println!("Error at Cylinder::update_flow_ratio()");
                    println!(" object {} is not connected to one of the objects:", valve.name);
                    for (name, _) in total_flow_ratio.iter() {
                        print!(" '{}'", name);
                    }
                    std::process::exit(1)
                }
            }
        }
        self.int_valves.flow_info = intake_flow_ratio;
        self.exh_valves.flow_info = exhaust_flow_ratio;
    }
}

impl SaveData for Cylinder {
    fn get_headers(&self) -> String {
        if self.store_species {
            let hearder = "crank-angle [deg]\tpressure [bar]\ttemperature [K]\tvolume [cm³]\tmass [mg]".to_string();
            let species = self.gas.species().join("\t");
            format!("{}\t{}", hearder, species)
        } else {
            "crank-angle [deg]\tpressure [bar]\ttemperature [K]\tvolume [cm³]\tmass [mg]".to_string()
        }
        
    }
    fn num_storable_variables(&self) -> usize {
        let num_prop: usize = 5;
        if self.store_species {
            num_prop + self.gas.species().len()
        } else {num_prop}
    }
    fn get_storable_data(&self) -> Array1<f64> {
        if self.store_species {
            stack![Axis(0), 
            array![self.angle.to_degrees(), self.gas.P()/1e5, self.gas.T(), self.volume*1e6, self.mass*1e6],
            self.gas.mole_frac().clone()
            ]
        } else {
            array![self.angle.to_degrees(), self.gas.P()/1e5, self.gas.T(), self.volume*1e6, self.mass*1e6]
        }
    }
}

impl std::fmt::Display for Cylinder {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}: 
        gas: `{}` 
        angle: {:.2} [CA deg] (ref at TDC firing)
        temperature: {:.2} [K]
        pressure: {:.2} [Pa]
        volume: {:.1} [cm³]
        mass: {:.1} [mg]
        {} \t\t\t {} \t\t\t {}
        diameter: {:.1} [mm] \t\t\t mean velocity: {:.1} [m/s] \t\t temperature: {:.1} [K]
        stroke: {:.1} [mm] \t\t\t temperature: {:.1} [K] \t\t area: {:.1} [cm²]
        displacement: {:.1} [cm³] \t\t area: {:.1} [cm²] \t\t
        compression_ratio: {:.1}
        wall temperature: {:.1} [K]",
            Style::new().bold().paint(&self.name),
            self.gas.name(),
            self.angle.to_degrees(),
            self.gas.T(),
            self.gas.P(),
            self.volume * 1e6,
            self.mass * 1e6,
            Style::new().underline().paint("     Geometry     "),
            Style::new().underline().paint("      Piston      "),
            Style::new().underline().paint("       Head       "),
            self.geometry.diameter * 1e3,
            self.piston.mean_velocity,
            self.head.temperature,
            self.geometry.stroke * 1e3,
            self.piston.temperature,
            self.head.area * 1e4,
            self.geometry.displacement * 1e6,
            self.piston.area * 1e4,
            self.geometry.compression_ratio,
            self.geometry.wall_temp,
        )
    }
}

impl ZeroD for Cylinder {}

#[derive(Debug, Clone)]
struct Geometry {
    compression_ratio: f64, //[-]
    diameter: f64,          //[m]
    stroke: f64,            //[m]
    transverse_area: f64,   //[m²]
    displacement: f64,      //[m³]
    clearance: f64,         //[m³]
    total_volume: f64,      //[m³]
    wall_temp: f64,         //[K]
}

impl Geometry {
    /// Creates a `Geometry` object. Inputs must be in SI units
    fn new(diam: f64, displ: f64, comp_ratio: f64, wall_temp: f64) -> Geometry {
        let transverse_area = 0.25 * PI * diam * diam;
        let stroke = displ / transverse_area;
        let clearance = displ / (comp_ratio - 1.0);
        let total_volume = displ + clearance;
        Geometry {
            compression_ratio: comp_ratio,
            diameter: diam,
            stroke,
            transverse_area,
            displacement: displ,
            clearance,
            total_volume,
            wall_temp,
        }
    }
}

#[derive(Debug, Clone)]
struct Crankshaft {
    conrod: f64,            // [m]
    crank: f64,             // [m]
    eccentricity: f64,      // [m]
    mech_total_length: f64, // [m]
    angle_tdc: f64,         // [CA radian] - should be zero if engine's eccentricity equals to zero
}

impl Crankshaft {
    fn new(conrod: f64, crank: f64, eccentricity: f64, angle_tdc: f64) -> Crankshaft {
        Crankshaft {
            conrod,
            crank,
            eccentricity,
            mech_total_length: (conrod + crank) * angle_tdc.cos(),
            angle_tdc: angle_tdc.to_radians(),
        }
    }
}

#[derive(Debug, Clone)]
struct Piston {
    mean_velocity: f64, // [m/s]
    temperature: f64,   // [K]
    area: f64,          // [m^2]
}

impl Piston {
    fn new(stroke: f64, diameter: f64, temperature: f64, speed: f64) -> Piston {
        let mean_velocity = 2.0 * stroke * speed / 60.0;
        let area = 0.25 * PI * diameter * diameter;
        Piston {
            mean_velocity,
            temperature,
            area,
        }
    }
}

#[derive(Debug, Clone)]
struct Head {
    temperature: f64, // [K]
    area: f64,        // [m^2]
}

#[derive(Debug, Clone)]
struct HeatTransfer {}

impl HeatTransfer {
    fn calculate(&self, vol: f64, temp: f64, press: f64, cyl: &Cylinder) -> f64 {
        let heat_trans_coeff = 130.0
            * vol.powf(-0.06)
            * (press * 1e-5).powf(0.8)
            * temp.powf(-0.4)
            * (cyl.piston.mean_velocity + 1.4).powf(0.8);
        let area_sup = PI * cyl.geometry.diameter * (vol / cyl.geometry.transverse_area);
        let q_piston = heat_trans_coeff * cyl.piston.area * (cyl.piston.temperature - temp);
        let q_head = heat_trans_coeff * cyl.head.area * (cyl.head.temperature - temp);
        let q_cylinder = heat_trans_coeff * area_sup * (cyl.geometry.wall_temp - temp);
        q_piston + q_head + q_cylinder
    }
}

#[derive(Debug, Clone)]
struct ValvesInfo {
    basic_info: Vec<ValveBasicInfo>,
    flow_info: FlowRatio,
    backflow: f64,
    gas_comp: String,
    opening: f64,
    closing: f64,
}

impl ValvesInfo {
    fn new(basic_info: Vec<ValveBasicInfo>, gas_comp: String) -> ValvesInfo {
        let mut opens_at = std::f64::INFINITY;
        let mut closes_at = std::f64::NEG_INFINITY;
        for v in basic_info.iter() {
            if v.opening_angle < opens_at {
                opens_at = v.opening_angle;
            }
            if v.closing_angle > closes_at {
                closes_at = v.closing_angle;
            }
        }
        ValvesInfo {
            basic_info,
            flow_info: FlowRatio::new(),
            backflow: 0.0,
            gas_comp,
            opening: opens_at.to_radians(),
            closing: closes_at.to_radians(),
        }
    }
    fn get_backflow(&mut self) -> f64 {
        let mut total_back_flow = 0.0;
        self.basic_info.iter().for_each(|v| total_back_flow += v.back_flow);
        self.backflow = total_back_flow;
        total_back_flow
    }
}

#[derive(Debug, Clone)]
struct ValveBasicInfo {
    name: String,
    opening_angle: f64,
    closing_angle: f64,
    mass_flow: f64,
    back_flow: f64,
}

impl ValveBasicInfo {
    fn new(name: String, opening_angle: f64, closing_angle: f64) -> ValveBasicInfo {
        ValveBasicInfo {
            name,
            opening_angle,
            closing_angle,
            mass_flow: 0.0,
            back_flow: 0.0,
        }
    }
    /// Returns the fresh charge through the valve, always positive sign.
    /// If flow is leaving the cylinder, it is added to the backflow counter. 
    fn get_charge(&mut self, dt: f64) -> f64 {
        let intake_mass = self.mass_flow*dt;
        if intake_mass >= 0.0 {
            let fresh_charge = intake_mass - self.back_flow;
            if fresh_charge >= 0.0 {
                self.back_flow = 0.0;
                return fresh_charge;
            } else {
                self.back_flow = -fresh_charge;
                return 0.0;
            }
        } else {
            self.back_flow -= intake_mass;
            0.0
        }
    }

    fn reset_back_flow(&mut self) {
        self.back_flow = 0.0;
    }
}