1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#![allow(non_snake_case)]

use crate::core::traits::{Conn, Connector, SaveData};
use crate::{BasicProperties, FlowRatio};
use ndarray::*;

/// Connector struct that connects two [`zero_dim`](../../zero_dim/index.html) objects by an orifice
pub struct Orifice {
    name: String,
    area: f64,
    discharge_coeff: f64,
    connecting: Vec<String>,
    flow_ratio: Vec<FlowRatio>,
}

impl Orifice {
    pub fn new(
        name: &str,
        diam: f64,
        discharge_coeff: f64,
        connecting: Vec<String>,
    ) -> Result<Orifice, String> {
        if connecting.len() != 2 {
            return Err(format!(
                "Connector `Orifice` must connect only two elements, connecting: {}",
                connecting.len()
            ));
        }
        if discharge_coeff > 1.0 || discharge_coeff <= 0.0 {
            return Err(format!(
                "`discharge_coeff` must be between 0.0 and 1.0: {}",
                discharge_coeff
            ));
        }
        let flow_ratio = vec![FlowRatio::new(), FlowRatio::new()];
        Ok(Orifice {
            name: name.to_string(),
            area: 0.25 * std::f64::consts::PI * diam * diam,
            discharge_coeff,
            connecting,
            flow_ratio,
        })
    }
}

impl Connector for Orifice {
    fn name<'a>(&'a self) -> &'a str {
        &self.name
    }
    fn connecting<'a>(&'a self) -> &'a Vec<String> {
        &self.connecting
    }
    fn connect_to(&mut self, elem_name: &str) -> Result<(), String> {
        self.connecting.push(elem_name.to_string());
        self.flow_ratio.push(FlowRatio::new());
        if self.connecting.len() != 2 {
            return Err(format!(
                "Wrong the number of connections. Orifice should connect only two elements"
            ));
        }
        Ok(())
    }
    fn update_flow_ratio(&mut self, prop: Vec<BasicProperties>, _step: f64) {
        // checking flow diretion
        let i_up: usize;
        let i_down: usize;
        let press_ratio = prop[0].pressure / prop[1].pressure;
        if press_ratio > 1.00000001 {
            i_up = 0;
            i_down = 1;
        } else if press_ratio < 0.99999991 {
            i_up = 1;
            i_down = 0;
        } else {
            self.flow_ratio
                .iter_mut()
                .for_each(|f| *f = FlowRatio::new());
            return;
        }

        let P_up = prop[i_up].pressure;
        let T_up = prop[i_up].temperature;
        let k = prop[i_up].cp_cv;
        let R = prop[i_up].gas_const;
        let P_down = prop[i_down].pressure;

        let kp = k + 1.0;
        let km = k - 1.0;
        let P_du = P_down / P_up;
        let m_dot: f64;
        // estimating mass flow
        if P_du > (2.0 / kp).powf(k / km) {
            m_dot = self.discharge_coeff * self.area * P_up / (R * T_up).sqrt()
                * (2.0 * k / km * (P_du.powf(2.0 / k) - P_du.powf(kp / k))).sqrt();
        } else {
            // chocked flow: independent of downstream pressure
            m_dot = self.discharge_coeff * self.area * P_up / (R * T_up).sqrt()
                * (k * (2.0 / kp).powf(kp / km)).sqrt();
        }

        // updating `flow_ratio` for upstream objects
        let i = match self
            .connecting
            .iter()
            .position(|name| *name == prop[i_up].name)
        {
            Some(i) => i,
            None => {
                println!("Error at Orifice::update_flow_ratio:");
                println!(" Objects:");
                for obj in prop.iter() {
                    print!(" '{}'", obj.name);
                }
                println!("are not connected to '{}'", self.name());
                std::process::exit(1)
            }
        };
        let ii = i; // store the position to use in the downstream
        self.flow_ratio[i].mass_flow = -m_dot;
        self.flow_ratio[i].enthalpy_flow = -m_dot * k * R / km * prop[i_up].temperature;

        // updating `flow_ratio` for downstream objects
        let i = match self
            .connecting
            .iter()
            .position(|name| *name == prop[i_down].name)
        {
            Some(i) => i,
            None => {
                println!("Error at Orifice::update_flow_ratio():");
                println!(" Objects:");
                for obj in prop.iter() {
                    print!(" '{}'", obj.name);
                }
                println!("are not connected to '{}'", self.name());
                std::process::exit(1)
            }
        };
        self.flow_ratio[i].mass_flow = -self.flow_ratio[ii].mass_flow;
        self.flow_ratio[i].enthalpy_flow = -self.flow_ratio[ii].enthalpy_flow;
    }
    fn get_flow_ratio<'a>(&'a self, elem_name: &str) -> Result<&'a FlowRatio, String> {
        match self.connecting.iter().position(|name| name == elem_name) {
            Some(i) => Ok(&self.flow_ratio[i]),
            None => Err(format!(
                "object '{}' was not found in '{}'",
                elem_name,
                self.name()
            )),
        }
    }
}

impl SaveData for Orifice {
    fn get_headers(&self) -> String {
        "mass flow [kg/s]\tenthalpy flow [J/s]".to_string()
    }
    fn num_storable_variables(&self) -> usize {
        2
    }
    fn get_storable_data(&self) -> Array1<f64> {
        array![
            self.flow_ratio[0].mass_flow,
            self.flow_ratio[0].enthalpy_flow
        ]
    }
}

impl Conn for Orifice {}