1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//! A wait-free single-producer single-consumer linked-list queue with
//! individually reusable nodes.
//!
//! Queue operations ([`Producer::push()`] and [`Consumer::pop()`]) do not
//! block or allocate memory. Individual [`Node`]s are allocated and managed
//! separately, and can be reused on multiple queues.
//!
//! # Examples
//!
//! Using a queue to send values between threads:
//!
//! ```rust
//! use llq::{Node, Queue};
//!
//! let (mut producer, mut consumer) = Queue::<usize>::new().split();
//!
//! producer.push(Node::new(0));
//! producer.push(Node::new(1));
//! producer.push(Node::new(2));
//!
//! std::thread::spawn(move || {
//!     assert_eq!(*consumer.pop().unwrap(), 0);
//!     assert_eq!(*consumer.pop().unwrap(), 1);
//!     assert_eq!(*consumer.pop().unwrap(), 2);
//!     assert!(consumer.pop().is_none());
//! }).join().unwrap();
//!
//! ```
//!
//! Reusing a node between multiple queues:
//!
//! ```rust
//! use llq::{Node, Queue};
//!
//! let (mut producer1, mut consumer1) = Queue::<usize>::new().split();
//! let (mut producer2, mut consumer2) = Queue::<usize>::new().split();
//!
//! let node = Node::new(3);
//! producer1.push(node);
//! let node = consumer1.pop().unwrap();
//! producer2.push(node);
//! let node = consumer2.pop().unwrap();
//!
//! assert_eq!(*node, 3);
//! ```
//!
//! [`Producer::push()`]: crate::Producer::push
//! [`Consumer::pop()`]: crate::Consumer::pop
//! [`Node`]: crate::Node

#![no_std]

extern crate alloc;

use alloc::boxed::Box;
use alloc::sync::Arc;
use core::cell::Cell;
use core::marker::PhantomData;
use core::mem;
use core::mem::MaybeUninit;
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering};

/// An individual node which may be pushed onto and popped from a [`Queue`].
///
/// [`Queue`]: crate::Queue
pub struct Node<T> {
    inner: NonNull<NodeInner<T>>,
    phantom: PhantomData<T>,
}

unsafe impl<T: Send> Send for Node<T> {}
unsafe impl<T: Sync> Sync for Node<T> {}

struct NodeInner<T> {
    next: AtomicPtr<NodeInner<T>>,
    data: MaybeUninit<T>,
}

impl<T> Node<T> {
    /// Allocates a new node containing the given value.
    pub fn new(data: T) -> Node<T> {
        Node {
            inner: unsafe {
                NonNull::new_unchecked(Box::into_raw(Box::new(NodeInner {
                    next: AtomicPtr::new(ptr::null_mut()),
                    data: MaybeUninit::new(data),
                })))
            },
            phantom: PhantomData,
        }
    }

    /// Deallocates a `Node` and returns the inner value.
    pub fn into_inner(this: Node<T>) -> T {
        unsafe {
            let data = ptr::read(this.inner.as_ref().data.as_ptr());
            drop(Box::from_raw(this.inner.as_ptr()));
            mem::forget(this);
            data
        }
    }
}

impl<T> Deref for Node<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        unsafe { &*self.inner.as_ref().data.as_ptr() }
    }
}

impl<T> DerefMut for Node<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *self.inner.as_mut().data.as_mut_ptr() }
    }
}

impl<T> Drop for Node<T> {
    fn drop(&mut self) {
        unsafe {
            ptr::drop_in_place(self.inner.as_mut().data.as_mut_ptr());
            drop(Box::from_raw(self.inner.as_ptr()));
        }
    }
}

/// A wait-free SPSC linked-list queue.
pub struct Queue<T> {
    head: Cell<*mut NodeInner<T>>,
    phantom: PhantomData<T>,
}

unsafe impl<T: Send> Send for Queue<T> {}

impl<T> Queue<T> {
    /// Creates a new queue.
    pub fn new() -> Queue<T> {
        let node = Box::into_raw(Box::new(NodeInner {
            next: AtomicPtr::new(ptr::null_mut()),
            data: MaybeUninit::uninit(),
        }));

        Queue { head: Cell::new(node), phantom: PhantomData }
    }

    /// Splits a queue into its producer and consumer halves.
    pub fn split(self) -> (Producer<T>, Consumer<T>) {
        let queue = Arc::new(self);

        let producer = Producer { queue: queue.clone(), tail: queue.head.get() };
        let consumer = Consumer { queue };

        (producer, consumer)
    }
}

impl<T> Drop for Queue<T> {
    fn drop(&mut self) {
        unsafe {
            let head = self.head.get();
            let mut current = (*head).next.load(Ordering::Relaxed);

            drop(Box::from_raw(head));

            while !current.is_null() {
                let next = (*current).next.load(Ordering::Relaxed);
                ptr::drop_in_place((*current).data.as_mut_ptr());
                drop(Box::from_raw(current));
                current = next;
            }
        }
    }
}

/// The consumer half of a [`Queue`].
///
/// [`Queue`]: crate::Queue
pub struct Consumer<T> {
    queue: Arc<Queue<T>>,
}

unsafe impl<T: Send> Send for Consumer<T> {}

impl<T> Consumer<T> {
    /// Attempts to remove and return an element from the queue. Returns `None`
    /// if the queue is empty.
    pub fn pop(&mut self) -> Option<Node<T>> {
        unsafe {
            let head = self.queue.head.get();
            let next = (*head).next.load(Ordering::Acquire);

            if !next.is_null() {
                ptr::copy_nonoverlapping((*next).data.as_ptr(), (*head).data.as_mut_ptr(), 1);
                (*head).next.store(ptr::null_mut(), Ordering::Relaxed);

                self.queue.head.set(next);

                return Some(Node { inner: NonNull::new_unchecked(head), phantom: PhantomData });
            }

            None
        }
    }
}

/// The producer half of a [`Queue`].
///
/// [`Queue`]: crate::Queue
pub struct Producer<T> {
    #[allow(unused)]
    queue: Arc<Queue<T>>,
    tail: *mut NodeInner<T>,
}

unsafe impl<T: Send> Send for Producer<T> {}

impl<T> Producer<T> {
    /// Adds an element to the queue.
    pub fn push(&mut self, node: Node<T>) {
        unsafe {
            let node_ptr = node.inner.as_ptr();
            mem::forget(node);

            let tail = &*self.tail;
            tail.next.store(node_ptr, Ordering::Release);

            self.tail = node_ptr;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    extern crate std;

    #[test]
    fn multithreaded() {
        let (mut producer, mut consumer) = Queue::new().split();

        let thread1 = std::thread::spawn(move || {
            for _ in 0..10000 {
                producer.push(Node::new(false));
            }

            producer.push(Node::new(true));
        });

        let thread2 = std::thread::spawn(move || {
            let mut counter = 0;

            loop {
                if let Some(node) = consumer.pop() {
                    if *node {
                        break;
                    } else {
                        counter += 1;
                    }
                }
            }

            assert_eq!(counter, 10000);
        });

        thread1.join().unwrap();
        thread2.join().unwrap();
    }

    #[test]
    fn multiple_queues() {
        let (mut producer1, mut consumer1) = Queue::new().split();
        let (mut producer2, mut consumer2) = Queue::new().split();

        for _ in 0..10000 {
            producer1.push(Node::new(()));
        }

        let mut counter = 0;
        while let Some(node) = consumer1.pop() {
            producer2.push(node);
            counter += 1;
        }
        assert_eq!(counter, 10000);

        let mut counter = 0;
        while let Some(_) = consumer2.pop() {
            counter += 1;
        }
        assert_eq!(counter, 10000);
    }

    #[test]
    fn drop_occurs() {
        struct S(Arc<Cell<usize>>);

        impl Drop for S {
            fn drop(&mut self) {
                self.0.set(self.0.get() + 1);
            }
        }

        let (mut producer, mut consumer) = Queue::new().split();

        let counter = Arc::new(Cell::new(0));

        for _ in 0..10000 {
            producer.push(Node::new(S(counter.clone())));
        }

        while let Some(_) = consumer.pop() {}

        assert_eq!(counter.get(), 10000);
    }
}