1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
//! Platform-agnostic LIS2DH12 accelerometer driver which uses I2C via
//! [embedded-hal] and implements the [`Accelerometer` trait][trait]
//! from the `accelerometer` crate.
//!
//! [embedded-hal]: https://docs.rs/embedded-hal
//! [trait]: https://docs.rs/accelerometer/latest/accelerometer/trait.Accelerometer.html
//!

#![deny(missing_docs)]
#![deny(warnings)]
#![no_std]

mod reg;

use core::fmt::Debug;
use core::marker::PhantomData;

#[cfg(feature = "out_f32")]
pub use accelerometer::vector::F32x3;
pub use accelerometer::vector::I16x3;
pub use accelerometer::{Accelerometer, Error, ErrorKind, RawAccelerometer};
use cast::u16;
#[cfg(feature = "out_f32")]
use cast::{f32, i16};
use embedded_hal as hal;
use hal::blocking::i2c::{Write, WriteRead};
#[cfg(feature = "out_f32")]
use num_traits::FromPrimitive;

use crate::reg::*;
pub use crate::reg::{Aoi6d, FifoMode, FullScale, Mode, Odr};

/// Possible slave addresses
pub enum SlaveAddr {
    /// Default slave address
    Default,
    /// Alternative slave address providing bit value for `A0`
    Alternative(bool),
}

impl SlaveAddr {
    fn addr(self) -> u8 {
        match self {
            SlaveAddr::Default => I2C_SAD,
            SlaveAddr::Alternative(a0) => I2C_SAD | a0 as u8,
        }
    }
}

/// Data status structure,
/// decoded from STATUS_REG register
#[derive(Debug)]
pub struct DataStatus {
    /// ZYXOR bit
    pub zyxor: bool,
    /// (XOR, YOR, ZOR) bits
    pub xyzor: (bool, bool, bool),
    /// ZYXDA bit
    pub zyxda: bool,
    /// (XDA, YDA, ZDA) bits
    pub xyzda: (bool, bool, bool),
}

/// `LIS2DH12` driver
pub struct Lis2dh12<I2C> {
    /// The concrete I²C device implementation
    i2c: I2C,
    /// The I²C device slave address
    addr: u8,
    /// Current full-scale
    fs: FullScale,
}

/// Interrupt setting and status
pub struct Int<'a, REG, I2C> {
    dev: &'a mut Lis2dh12<I2C>,
    reg: PhantomData<REG>,
}

impl<I2C, E> Lis2dh12<I2C>
where
    I2C: WriteRead<Error = E> + Write<Error = E>,
    E: Debug,
{
    /// Create a new `LIS2DH12` driver from the given `I2C` peripheral
    pub fn new(i2c: I2C, addr: SlaveAddr) -> Result<Self, Error<E>> {
        let mut dev = Self {
            i2c,
            addr: addr.addr(),
            fs: FullScale::G2,
        };

        // Ensure we have the correct device ID
        if dev.get_device_id()? != DEVICE_ID {
            ErrorKind::Device.err()?;
        }

        Ok(dev)
    }

    /// Destroy driver instance, return `I2C` bus instance
    pub fn destroy(self) -> I2C {
        self.i2c
    }

    /// `WHO_AM_I` register
    pub fn get_device_id(&mut self) -> Result<u8, Error<E>> {
        self.read_reg(Register::WHO_AM_I).map_err(Into::into)
    }

    /// Operating mode selection,
    /// `CTRL_REG1`: `LPen` bit,
    /// `CTRL_REG4`: `HR` bit
    pub fn set_mode(&mut self, mode: Mode) -> Result<(), Error<E>> {
        match mode {
            Mode::LowPower => {
                self.reg_reset_bits(Register::CTRL_REG4, HR)?;
                self.reg_set_bits(Register::CTRL_REG1, LPen)?;
            }
            Mode::Normal => {
                self.reg_reset_bits(Register::CTRL_REG1, LPen)?;
                self.reg_reset_bits(Register::CTRL_REG4, HR)?;
            }
            Mode::HighResolution => {
                self.reg_reset_bits(Register::CTRL_REG1, LPen)?;
                self.reg_set_bits(Register::CTRL_REG4, HR)?;
            }
        }
        Ok(())
    }

    /// Data rate selection,
    /// `CTRL_REG1`: `ODR`
    pub fn set_odr(&mut self, odr: Odr) -> Result<(), Error<E>> {
        self.modify_reg(Register::CTRL_REG1, |v| {
            (v & !ODR_MASK) | ((odr as u8) << 4)
        })?;
        // By design, when the device from high-resolution configuration (HR) is set to power-down mode (PD),
        // it is recommended to read register REFERENCE (26h) for a complete reset of the filtering block
        // before switching to normal/high-performance mode again.
        if let Odr::PowerDown = odr {
            self.get_ref()?;
        }
        Ok(())
    }

    /// X,Y,Z-axis enable,
    /// `CTRL_REG1`: `Xen`, `Yen`, `Zen`
    pub fn enable_axis(&mut self, (x, y, z): (bool, bool, bool)) -> Result<(), Error<E>> {
        self.modify_reg(Register::CTRL_REG1, |mut v| {
            v &= !(Xen | Yen | Zen); // disable all axises
            v |= if x { Xen } else { 0 };
            v |= if y { Yen } else { 0 };
            v |= if z { Zen } else { 0 };
            v
        })?;
        Ok(())
    }

    /// `CLICK` interrupt on `INT1` pin,
    /// `CTRL_REG3`: `I1_CLICK`
    pub fn enable_i1_click(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG3, I1_CLICK, enable)?;
        Ok(())
    }

    /// `IA1` interrupt on `INT1` pin,
    /// `CTRL_REG3`: `I1_IA1`
    pub fn enable_i1_ia1(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG3, I1_IA1, enable)?;
        Ok(())
    }

    /// `IA2` interrupt on `INT1` pin,
    /// `CTRL_REG3`: `I1_IA2`
    pub fn enable_i1_ia2(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG3, I1_IA2, enable)?;
        Ok(())
    }

    /// `ZYXDA` interrupt on `INT1` pin,
    /// `CTRL_REG3`: `I2_ZYXDA`
    pub fn enable_i1_zyxda(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG3, I1_ZYXDA, enable)?;
        Ok(())
    }

    /// FIFO watermark on `INT1` pin,
    /// `CTRL_REG3`: `I2_ZYXDA`
    pub fn enable_i1_wtm(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG3, I1_WTM, enable)?;
        Ok(())
    }

    /// FIFO overrun on `INT1` pin,
    /// `CTRL_REG3`: `I1_OVERRUN`
    pub fn enable_i1_overrun(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG3, I1_OVERRUN, enable)?;
        Ok(())
    }

    /// Block data update,
    /// `CTRL_REG4`: `BDU`
    pub fn set_bdu(&mut self, bdu: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG4, BDU, bdu)?;
        Ok(())
    }

    /// Full-scale selection,
    /// `CTRL_REG4`: `FS`
    pub fn set_fs(&mut self, fs: FullScale) -> Result<(), Error<E>> {
        self.modify_reg(Register::CTRL_REG4, |v| (v & !FS_MASK) | ((fs as u8) << 4))?;
        self.fs = fs;
        Ok(())
    }

    /// Reboot memory content,
    /// `CTRL_REG5`: `BOOT`
    pub fn reboot(&mut self, reboot: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG5, BOOT, reboot)?;
        Ok(())
    }

    /// In boot,
    /// `CTRL_REG5`: `BOOT`
    pub fn in_boot(&mut self) -> Result<bool, Error<E>> {
        let reg = self.read_reg(Register::CTRL_REG5)?;
        Ok((reg & BOOT) != 0)
    }

    /// FIFO enable,
    /// `CTRL_REG5`: `FIFO_EN`
    pub fn enable_fifo(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG5, FIFO_EN, enable)?;
        Ok(())
    }

    /// Latch interrupt request on INT1_SRC (31h),
    /// with INT1_SRC (31h) register cleared by reading INT1_SRC (31h) itself,
    /// `CTRL_REG5`: `LIR_INT1`
    pub fn enable_lir_int1(&mut self, latch: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG5, LIR_INT1, latch)?;
        Ok(())
    }

    /// 4D enable: 4D detection is enabled on INT1 pin
    /// when 6D bit on INT1_CFG (30h) is set to 1,
    /// `CTRL_REG5`: `D4D_INT1`
    pub fn enable_d4d_int1(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG5, D4D_INT1, enable)?;
        Ok(())
    }

    /// Latch interrupt request on INT2_SRC (35h) register,
    /// with INT2_SRC (35h) register cleared by reading INT2_SRC (35h) itself,
    /// `CTRL_REG5`: `LIR_INT2`
    pub fn enable_lir_int2(&mut self, latch: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG5, LIR_INT2, latch)?;
        Ok(())
    }

    /// 4D enable: 4D detection is enabled on INT2 pin
    /// when 6D bit on INT2_CFG (34h) is set to 1,
    /// `CTRL_REG5`: `D4D_INT2`
    pub fn enable_d4d_int2(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG5, D4D_INT2, enable)?;
        Ok(())
    }

    /// `CLICK` interrupt on `INT2` pin,
    /// `CTRL_REG6`: `I2_CLICK`
    pub fn enable_i2_click(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG6, I2_CLICK, enable)?;
        Ok(())
    }

    /// `IA1` interrupt on `INT2` pin,
    /// `CTRL_REG6`: `I2_IA1`
    pub fn enable_i2_ia1(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG6, I2_IA1, enable)?;
        Ok(())
    }

    /// `IA2` interrupt on `INT2` pin,
    /// `CTRL_REG6`: `I2_IA2`
    pub fn enable_i2_ia2(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG6, I2_IA2, enable)?;
        Ok(())
    }

    /// Boot interrupt on `INT2` pin,
    /// `CTRL_REG6`: `I2_BOOT`
    pub fn enable_i2_boot(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG6, I2_BOOT, enable)?;
        Ok(())
    }

    /// Activity interrupt on `INT2` pin,
    /// `CTRL_REG6`: `I2_ACT`
    pub fn enable_i2_act(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG6, I2_ACT, enable)?;
        Ok(())
    }

    /// INT1/INT2 pin polarity,
    /// `CTRL_REG6`: `INT_POLARITY`
    pub fn set_int_polarity(&mut self, active_low: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CTRL_REG6, INT_POLARITY, active_low)?;
        Ok(())
    }

    /// Data status,
    /// `STATUS_REG`: as
    /// DataStatus {zyxor: `ZYXOR`, xyzor: (`XOR`, `YOR`, `ZOR`), zyxda: `ZYXDA`, xyzda: (`XDA`, `YDA`, `ZDA`)}
    pub fn get_status(&mut self) -> Result<DataStatus, Error<E>> {
        let reg = self.read_reg(Register::STATUS_REG)?;
        Ok(DataStatus {
            zyxor: (reg & ZYXOR) != 0,
            xyzor: ((reg & XOR) != 0, (reg & YOR) != 0, (reg & ZOR) != 0),
            zyxda: (reg & ZYXDA) != 0,
            xyzda: ((reg & XDA) != 0, (reg & YDA) != 0, (reg & ZDA) != 0),
        })
    }

    /// FIFO mode selection,
    /// `FIFO_CTRL_REG`: `FM`
    pub fn set_fm(&mut self, fm: FifoMode) -> Result<(), Error<E>> {
        self.modify_reg(Register::FIFO_CTRL_REG, |v| {
            (v & !FM_MASK) | ((fm as u8) << 6)
        })?;
        Ok(())
    }

    /// FIFO threshold,
    /// `FIFO_CTRL_REG`: `FTH`
    pub fn set_fth(&mut self, fth: u8) -> Result<(), Error<E>> {
        self.modify_reg(Register::FIFO_CTRL_REG, |v| {
            (v & !FTH_MASK) | (fth & FTH_MASK)
        })?;
        Ok(())
    }

    /// Disable click interrupt,
    /// `CLICK_CFG` clean all bits
    pub fn disable_click(&mut self) -> Result<(), Error<E>> {
        self.write_reg(Register::CLICK_CFG, 0x00)?;
        Ok(())
    }

    /// Enable interrupt double-click on X,Y,Z axis,
    /// `CLICK_CFG`: `XD`, `YD`, `ZD`
    pub fn enable_double_click(&mut self, (x, y, z): (bool, bool, bool)) -> Result<(), Error<E>> {
        self.modify_reg(Register::CLICK_CFG, |mut v| {
            v &= !(XD | YD | ZD); // disable all axises
            v |= if x { XD } else { 0 };
            v |= if y { YD } else { 0 };
            v |= if z { ZD } else { 0 };
            v
        })?;
        Ok(())
    }

    /// Enable interrupt single-click on X,Y,Z axis,
    /// `CLICK_CFG`: `XS`, `YS`, `ZS`
    pub fn enable_single_click(&mut self, (x, y, z): (bool, bool, bool)) -> Result<(), Error<E>> {
        self.modify_reg(Register::CLICK_CFG, |mut v| {
            v &= !(XS | YS | ZS); // disable all axises
            v |= if x { XS } else { 0 };
            v |= if y { YS } else { 0 };
            v |= if z { ZS } else { 0 };
            v
        })?;
        Ok(())
    }

    /// Click source,
    /// `CLICK_SRC` decoded as ((`DClick`, `SClick`), `Sign`, (`X`, `Y`, `Z`))
    #[allow(clippy::type_complexity)]
    pub fn get_click_src(
        &mut self,
    ) -> Result<Option<((bool, bool), bool, (bool, bool, bool))>, Error<E>> {
        let reg = self.read_reg(Register::CLICK_SRC)?;
        if (reg & IA) != 0 {
            Ok(Some((
                ((reg & DClick) != 0, (reg & SClick) != 0),
                (reg & Sign) != 0,
                ((reg & X) != 0, (reg & Y) != 0, (reg & Z) != 0),
            )))
        } else {
            Ok(None)
        }
    }

    /// If the LIR_Click bit is not set, the interrupt is kept high
    /// for the duration of the latency window.
    /// If the LIR_Click bit is set, the interrupt is kept high
    /// until the CLICK_SRC (39h) register is read.
    /// `CLICK_THS`: `LIR_Click`
    pub fn enable_lir_click(&mut self, latch: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::CLICK_THS, LIR_Click, latch)?;
        Ok(())
    }

    /// Click threshold,
    /// `CLICK_THS`: `Ths`
    pub fn set_click_ths(&mut self, ths: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::CLICK_THS, ths & THS_MASK)?;
        Ok(())
    }

    /// Click threshold as f32,
    /// `CLICK_THS`: `Ths`
    #[cfg(feature = "out_f32")]
    pub fn set_click_thsf(&mut self, ths: f32) -> Result<(), Error<E>> {
        self.set_click_ths(self.fs.convert_ths_f32tou8(ths))
    }

    /// Click time limit,
    /// `TIME_LIMIT`: `TLI`
    pub fn set_time_limit(&mut self, tli: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::TIME_LIMIT, tli & TLI_MASK)?;
        Ok(())
    }

    /// Click time latency,
    /// `TIME_LATENCY`: `TLA`
    pub fn set_time_latency(&mut self, tla: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::TIME_LATENCY, tla)?;
        Ok(())
    }

    /// Click time window,
    /// `TIME_WINDOW`: `TW`
    pub fn set_time_window(&mut self, tw: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::TIME_WINDOW, tw)?;
        Ok(())
    }

    /// Sleep-to-wake, return-to-sleep activation threshold in low-power mode,
    /// `ACT_THS`: `Acth`
    pub fn set_act_ths(&mut self, ths: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::ACT_THS, ths & Acth_MASK)?;
        Ok(())
    }

    /// Sleep-to-wake, return-to-sleep activation threshold as f32,
    /// `ACT_THS`: `Acth`
    #[cfg(feature = "out_f32")]
    pub fn set_act_thsf(&mut self, ths: f32) -> Result<(), Error<E>> {
        self.set_act_ths(self.fs.convert_ths_f32tou8(ths))
    }

    /// Sleep-to-wake, return-to-sleep duration,
    /// `ACT_DUR`: `ActD`
    pub fn set_act_dur(&mut self, d: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::ACT_DUR, d)?;
        Ok(())
    }

    /// Temperature sensor enable,
    /// `TEMP_CFG_REG`: `TEMP_EN`,
    /// the `BDU` bit in `CTRL_REG4` is also set
    pub fn enable_temp(&mut self, enable: bool) -> Result<(), Error<E>> {
        self.reg_xset_bits(Register::TEMP_CFG_REG, TEMP_EN, enable)?;
        if enable {
            // enable block data update (required for temp reading)
            self.reg_set_bits(Register::CTRL_REG4, BDU)?;
        }
        Ok(())
    }

    /// Temperature data status,
    /// `STATUS_REG_AUX`: `TOR` - Temperature data overrun,
    ///                   `TDA` - Temperature new data available
    pub fn get_temp_status(&mut self) -> Result<(bool, bool), Error<E>> {
        let reg = self.read_reg(Register::STATUS_REG_AUX)?;
        Ok(((reg & TOR) != 0, (reg & TDA) != 0))
    }

    /// Temperature sensor data,
    /// `OUT_TEMP_H`, `OUT_TEMP_L`
    pub fn get_temp_out(&mut self) -> Result<(i8, u8), Error<E>> {
        let mut buf = [0u8; 2];
        self.read_regs(Register::OUT_TEMP_L, &mut buf)?;
        Ok((buf[1] as i8, buf[0]))
    }

    /// Temperature sensor data as float,
    /// `OUT_TEMP_H`, `OUT_TEMP_L` converted to `f32`
    #[cfg(feature = "out_f32")]
    pub fn get_temp_outf(&mut self) -> Result<f32, Error<E>> {
        let (out_h, out_l) = self.get_temp_out()?;
        // 10-bit resolution
        let value = (i16(out_h) << 2) | i16(out_l >> 6);
        Ok(f32(value) * 0.25)
    }

    /// `REFERENCE` register
    pub fn set_ref(&mut self, reference: u8) -> Result<(), Error<E>> {
        self.write_reg(Register::REFERENCE, reference)?;
        Ok(())
    }

    /// `REFERENCE` register
    pub fn get_ref(&mut self) -> Result<u8, Error<E>> {
        self.read_reg(Register::REFERENCE).map_err(Into::into)
    }

    /// INT1
    pub fn int1(&mut self) -> Int<Int1Regs, I2C> {
        Int::new(self)
    }

    /// INT2
    pub fn int2(&mut self) -> Int<Int2Regs, I2C> {
        Int::new(self)
    }

    /// Dump registers
    #[cfg(debug_assertions)]
    pub fn dump_regs<W>(&mut self, w: &mut W) -> Result<(), Error<E>>
    where
        W: core::fmt::Write,
    {
        writeln!(
            w,
            "CTRL_REG1 (20h) = {:#010b}",
            self.read_reg(Register::CTRL_REG1)?
        )
        .unwrap();
        writeln!(
            w,
            "CTRL_REG3 (22h) = {:#010b}",
            self.read_reg(Register::CTRL_REG3)?
        )
        .unwrap();
        writeln!(
            w,
            "CTRL_REG4 (23h) = {:#010b}",
            self.read_reg(Register::CTRL_REG4)?
        )
        .unwrap();
        writeln!(
            w,
            "CTRL_REG5 (24h) = {:#010b}",
            self.read_reg(Register::CTRL_REG5)?
        )
        .unwrap();
        writeln!(
            w,
            "CTRL_REG6 (25h) = {:#010b}",
            self.read_reg(Register::CTRL_REG6)?
        )
        .unwrap();
        writeln!(
            w,
            "INT1_CFG (30h) = {:#010b}",
            self.read_reg(Register::INT1_CFG)?
        )
        .unwrap();
        writeln!(
            w,
            "INT1_THS (32h) = {:#010b}",
            self.read_reg(Register::INT1_THS)?
        )
        .unwrap();
        Ok(())
    }

    #[inline]
    fn read_reg(&mut self, reg: Register) -> Result<u8, E> {
        let mut buf = [0u8];
        self.i2c.write_read(self.addr, &[reg.addr()], &mut buf)?;
        Ok(buf[0])
    }

    #[inline]
    fn read_regs(&mut self, reg: Register, buffer: &mut [u8]) -> Result<(), E> {
        self.i2c
            .write_read(self.addr, &[reg.addr() | I2C_SUB_MULTI], buffer)
    }

    #[inline]
    fn write_reg(&mut self, reg: Register, val: u8) -> Result<(), E> {
        self.i2c.write(self.addr, &[reg.addr(), val])
    }

    #[inline]
    fn modify_reg<F>(&mut self, reg: Register, f: F) -> Result<(), E>
    where
        F: FnOnce(u8) -> u8,
    {
        let r = self.read_reg(reg)?;
        self.write_reg(reg, f(r))?;
        Ok(())
    }

    #[inline]
    fn reg_set_bits(&mut self, reg: Register, bits: u8) -> Result<(), E> {
        self.modify_reg(reg, |v| v | bits)
    }

    #[inline]
    fn reg_reset_bits(&mut self, reg: Register, bits: u8) -> Result<(), E> {
        self.modify_reg(reg, |v| v & !bits)
    }

    #[inline]
    fn reg_xset_bits(&mut self, reg: Register, bits: u8, set: bool) -> Result<(), E> {
        if set {
            self.reg_set_bits(reg, bits)
        } else {
            self.reg_reset_bits(reg, bits)
        }
    }
}

impl<I2C, E> RawAccelerometer<I16x3> for Lis2dh12<I2C>
where
    I2C: WriteRead<Error = E> + Write<Error = E>,
    E: Debug,
{
    type Error = E;

    /// Get acceleration reading from the accelerometer
    fn accel_raw(&mut self) -> Result<I16x3, Error<E>> {
        let mut buf = [0u8; 6];
        self.read_regs(Register::OUT_X_L, &mut buf)?;

        Ok(I16x3::new(
            (u16(buf[0]) + (u16(buf[1]) << 8)) as i16,
            (u16(buf[2]) + (u16(buf[3]) << 8)) as i16,
            (u16(buf[4]) + (u16(buf[5]) << 8)) as i16,
        ))
    }
}

#[cfg(feature = "out_f32")]
impl<I2C, E> Accelerometer for Lis2dh12<I2C>
where
    I2C: WriteRead<Error = E> + Write<Error = E>,
    E: Debug,
{
    type Error = E;

    /// Get normalized ±g reading from the accelerometer
    fn accel_norm(&mut self) -> Result<F32x3, Error<E>> {
        let acc_raw: I16x3 = self.accel_raw()?;

        Ok(F32x3::new(
            self.fs.convert_out_i16tof32(acc_raw.x),
            self.fs.convert_out_i16tof32(acc_raw.y),
            self.fs.convert_out_i16tof32(acc_raw.z),
        ))
    }

    /// Get sample rate of accelerometer in Hz
    fn sample_rate(&mut self) -> Result<f32, Error<Self::Error>> {
        let creg1 = self.read_reg(Register::CTRL_REG1)?;
        let rate = match FromPrimitive::from_u8(creg1 >> 4) {
            Some(Odr::PowerDown) => 0.0,
            Some(Odr::Hz1) => 1.0,
            Some(Odr::Hz10) => 10.0,
            Some(Odr::Hz25) => 25.0,
            Some(Odr::Hz50) => 50.0,
            Some(Odr::Hz100) => 100.0,
            Some(Odr::Hz200) => 200.0,
            Some(Odr::Hz400) => 400.0,
            Some(Odr::HighRate0) => 1620.0,
            Some(Odr::HighRate1) => {
                if creg1 & LPen == 0 {
                    1344.0
                } else {
                    5376.0
                }
            }
            None => 0.0,
        };
        Ok(rate)
    }
}

impl<'a, REG, I2C, E> Int<'a, REG, I2C>
where
    REG: IntRegs,
    I2C: WriteRead<Error = E> + Write<Error = E>,
    E: Debug,
{
    fn new(dev: &'a mut Lis2dh12<I2C>) -> Self {
        Self {
            dev,
            reg: PhantomData,
        }
    }

    /// Disable interrupt,
    /// `INTx_CFG` clean all bits
    pub fn disable(&mut self) -> Result<(), Error<E>> {
        self.dev.write_reg(REG::reg_cfg(), 0x00)?;
        Ok(())
    }

    /// AOI-6D Interrupt mode,
    /// `INTx_CFG`: `AOI`, `6D`
    pub fn set_mode(&mut self, mode: Aoi6d) -> Result<(), Error<E>> {
        self.dev
            .modify_reg(REG::reg_cfg(), |v| (v & !AOI_6D_MASK) | ((mode as u8) << 6))?;
        Ok(())
    }

    /// X,Y,Z high event enable,
    /// `INTx_CFG`: `XHIE`, `YHIE`, `ZHIE`
    pub fn enable_high(&mut self, (x, y, z): (bool, bool, bool)) -> Result<(), Error<E>> {
        self.dev.modify_reg(REG::reg_cfg(), |mut v| {
            v &= !(XHIE | YHIE | ZHIE); // disable all axises
            v |= if x { XHIE } else { 0 };
            v |= if y { YHIE } else { 0 };
            v |= if z { ZHIE } else { 0 };
            v
        })?;
        Ok(())
    }

    /// X,Y,Z low event enable,
    /// `INTx_CFG`: `XLIE`, `YLIE`, `ZLIE`
    pub fn enable_low(&mut self, (x, y, z): (bool, bool, bool)) -> Result<(), Error<E>> {
        self.dev.modify_reg(REG::reg_cfg(), |mut v| {
            v &= !(XLIE | YLIE | ZLIE); // disable all axises
            v |= if x { XLIE } else { 0 };
            v |= if y { YLIE } else { 0 };
            v |= if z { ZLIE } else { 0 };
            v
        })?;
        Ok(())
    }

    /// Source,
    /// `INTx_SRC` decoded as ((`XH`, `XL`), (`YH`, `YL`), (`ZH`, `ZL`))
    #[allow(clippy::type_complexity)]
    pub fn get_src(
        &mut self,
    ) -> Result<Option<((bool, bool), (bool, bool), (bool, bool))>, Error<E>> {
        let reg = self.dev.read_reg(REG::reg_src())?;
        if (reg & IA) != 0 {
            Ok(Some((
                ((reg & XH) != 0, (reg & XL) != 0),
                ((reg & YH) != 0, (reg & YL) != 0),
                ((reg & ZH) != 0, (reg & ZL) != 0),
            )))
        } else {
            Ok(None)
        }
    }

    /// Threshold,
    /// `INTx_THS`: `THS`
    pub fn set_ths(&mut self, ths: u8) -> Result<(), Error<E>> {
        self.dev.write_reg(REG::reg_ths(), ths & THS_MASK)?;
        Ok(())
    }

    /// Threshold as f32,
    /// `INTx_THS`: `THS`
    #[cfg(feature = "out_f32")]
    pub fn set_thsf(&mut self, ths: f32) -> Result<(), Error<E>> {
        self.set_ths(self.dev.fs.convert_ths_f32tou8(ths))
    }

    /// Duration,
    /// `INTx_DURATION`: `D`
    pub fn set_duration(&mut self, d: u8) -> Result<(), Error<E>> {
        self.dev.write_reg(REG::reg_duration(), d & D_MASK)?;
        Ok(())
    }
}