1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! This package wraps the lower-level crate [`linux_io`] to provide more
//! convenient access to the linux KVM API, which allows you to create and
//! run kernel-managed virtual machines on architectures that support that.
//!
//! For now this crate is largely just serving as a prototype case for building
//! low-cost safe abstractions on top of [`linux_io`], so it doesn't support
//! the full KVM API. Hopefully over time it'll gain enough to be useful.
#![no_std]

pub mod ioctl;
pub mod raw;

pub use linux_io::result::Result;
use linux_io::{File, OpenOptions};
use linux_unsafe::int;

/// Represents the kernel's whole KVM subsystem.
///
/// This is the entry point for obtaining all other KVM objects, whether
/// directly or indirectly.
#[derive(Debug)]
pub struct Kvm {
    f: File<ioctl::system::KvmSystem>,
}

impl Kvm {
    /// Opens the KVM device `/dev/kvm` and returns a [`Kvm`] instance wrapping
    /// it.
    ///
    /// Fails with an error on a system where `/dev/kvm` doesn't exist for some
    /// reason, such as if KVM is not enabled in the kernel.
    ///
    /// **Warning:** The safety of this function relies on there being a
    /// reasonable device node at `/dev/kvm`. If the target system has some
    /// other unrelated device node or a non-device entry at that location
    /// then the returned object will allow issuing ioctl requests to that
    /// file that may cause memory corruption depending on how the opened
    /// device reacts to the KVM ioctl numbers.
    ///
    /// This function is not marked as `unsafe` because a system configured in
    /// that way is considered unreasonable, and this crate is optimized for
    /// reasonable Linux configurations that follow the filesystem layout given
    /// in the kernel documentation.
    pub fn open() -> Result<Self> {
        let path = unsafe { core::ffi::CStr::from_bytes_with_nul_unchecked(b"/dev/kvm\0") };
        let opts = OpenOptions::read_write().close_on_exec();
        let f = File::open(path, opts)?;

        // Safety: On any reasonable Linux system /dev/kvm should either not
        // exist (and we would've returned an error by now) or refer to the
        // main KVM system device, and should therefore be suitable to
        // accept the KvmSystem ioctls.
        let f = unsafe { f.to_device(ioctl::system::KvmSystem) };
        Ok(Self::from_file(f))
    }

    /// Wraps the given already-opened file in a `Kvm` object.
    #[inline(always)]
    pub const fn from_file(f: File<ioctl::system::KvmSystem>) -> Self {
        Self { f }
    }

    /// Identifies the version of the KVM API used by the current kernel.
    ///
    /// The stable API always returns version 12. The kernel documentation suggests
    /// that applications should always call this and refuse to run if it returns
    /// any value other than that; the version number is not expected to change
    /// in the future because future API additions will use [`Self::check_extension`]
    /// instead.
    #[inline(always)]
    pub fn get_api_version(&self) -> Result<int> {
        self.f.ioctl(ioctl::system::KVM_GET_API_VERSION, ())
    }

    /// Query whether the KVM subsystem in the current kernel supports a particular
    /// extension.
    ///
    /// A result of zero indicates a lack of support while nonzero indicates
    /// support. The nonzero value may carry additional meanings for some
    /// extensions.
    #[inline(always)]
    pub fn check_extension(&self, ext: int) -> Result<int> {
        self.f.ioctl(ioctl::system::KVM_CHECK_EXTENSION, &ext)
    }

    /// Create a new virtual machine.
    #[inline(always)]
    pub fn create_vm(&self) -> Result<VirtualMachine> {
        let f = self.f.ioctl(ioctl::system::KVM_CREATE_VM, ())?;
        Ok(VirtualMachine::from_file(f, &self))
    }

    /// Determine the size of the shared memory regions that will be used
    /// between kernel and userspace for each VCPU.
    #[inline(always)]
    pub fn get_vcpu_mmap_size(&self) -> Result<int> {
        self.f.ioctl(ioctl::system::KVM_GET_VCPU_MMAP_SIZE, ())
    }
}

/// An individual virtual machine created through a [`Kvm`] object.
#[derive(Debug)]
pub struct VirtualMachine<'a> {
    f: File<ioctl::vm::KvmVm>,
    kvm: &'a Kvm,
}

impl<'a> VirtualMachine<'a> {
    /// Wraps the given already-opened file in a `VirtualMachine` object.
    #[inline(always)]
    const fn from_file(f: File<ioctl::vm::KvmVm>, kvm: &'a Kvm) -> Self {
        Self { f, kvm }
    }

    /// Query whether the KVM subsystem in the current kernel supports a particular
    /// extension for a specific VM.
    ///
    /// A result of zero indicates a lack of support while nonzero indicates
    /// support. The nonzero value may carry additional meanings for some
    /// extensions.
    #[inline(always)]
    pub fn check_extension(&self, ext: int) -> Result<int> {
        self.f.ioctl(ioctl::vm::KVM_CHECK_EXTENSION, &ext)
    }

    /// Create a new VCPU for this VM.
    ///
    /// If creating multiple VCPUs in the same VM, start with `cpu_id` zero
    /// and then increment for each new VM. The kernel enforces a
    /// platform-specific limit on VCPUs per VM, which you can determine by
    /// querying extensions using [`Self::check_extension`].
    #[inline(always)]
    pub fn create_vcpu(&self, cpu_id: linux_unsafe::int) -> Result<VirtualCpu> {
        self.f
            .ioctl(ioctl::vm::KVM_CREATE_VCPU, cpu_id)
            .map(|f| VirtualCpu::from_file(f, &self.kvm))
    }

    /// Sets one of the VM's memory region slots to refer to the given
    /// memory region, which must outlive this VCPU.
    pub fn set_guest_memory_region<'r: 'a>(
        &mut self,
        slot: u32,
        flags: u32,
        guest_phys_addr: u64,
        host_region: &'r mut MemoryRegion,
    ) -> Result<()> {
        let desc = raw::kvm_userspace_memory_region {
            slot,
            flags,
            guest_phys_addr,
            memory_size: host_region.length as u64,
            userspace_addr: host_region.addr as u64,
        };
        self.f
            .ioctl(ioctl::vm::KVM_SET_USER_MEMORY_REGION, &desc)
            .map(|_| ())
    }
}

/// A virtual CPU belonging to a [`VirtualMachine`].
#[derive(Debug)]
pub struct VirtualCpu<'a> {
    f: File<ioctl::vcpu::KvmVcpu>,
    kvm: &'a Kvm,
}

impl<'a> VirtualCpu<'a> {
    /// Wraps the given already-opened file in a `VirtualCpu` object.
    #[inline(always)]
    const fn from_file(f: File<ioctl::vcpu::KvmVcpu>, kvm: &'a Kvm) -> Self {
        Self { f, kvm }
    }

    /// Get the architecture-specific representation of the current register
    /// values of this vCPU.
    #[inline(always)]
    pub fn get_regs(&self) -> Result<raw::kvm_regs> {
        self.f.ioctl(ioctl::vcpu::KVM_GET_REGS, ())
    }

    /// Set the architecture-specific representation of the current register
    /// values of this vCPU.
    #[inline(always)]
    pub fn set_regs(&self, new: &raw::kvm_regs) -> Result<()> {
        self.f.ioctl(ioctl::vcpu::KVM_SET_REGS, new).map(|_| ())
    }

    /// Wrap this CPU into an object that has the necessary extra state to
    /// run it.
    ///
    /// This encapsulates the step of using `mmap` on the VCPU file descriptor
    /// to establish a shared memory space with the KVM subsystem, so failure
    /// here represents failure of either that `mmap` operation or the
    /// `ioctl` call to discover its parameters.
    pub fn to_runner(self) -> Result<VirtualCpuRunner<'a>> {
        let mmap_size = self.kvm.get_vcpu_mmap_size()?;
        VirtualCpuRunner::new(self, mmap_size as linux_unsafe::size_t)
    }
}

/// Wraps a [`VirtualCpu`] with some extra state required to run it.
#[derive(Debug)]
pub struct VirtualCpuRunner<'a> {
    vcpu: VirtualCpu<'a>,
    run: *mut raw::kvm_run,
    run_len: linux_unsafe::size_t,
}

impl<'a> VirtualCpuRunner<'a> {
    fn new(cpu: VirtualCpu<'a>, mmap_size: linux_unsafe::size_t) -> Result<Self> {
        if core::mem::size_of::<raw::kvm_run>() > (mmap_size as usize) {
            // We can't safely use our struct type over the mmap region if
            // the region isn't long enough. This shouldn't happen because
            // we're using the documented structure.
            return Err(linux_io::result::Error::new(12 /* ENOMEM */));
        }

        let run_ptr = unsafe {
            cpu.f.mmap_raw(
                0,
                mmap_size,
                core::ptr::null_mut(),
                0x1 | 0x2, // PROT_READ | PROT_WRITE
                0x1,       // MAP_SHARED
            )
        }? as *mut raw::kvm_run;

        // Safety: We assume that the kernel has placed valid initial values for
        // all of the fields of kvm_run in this shared memory area before
        // returning it, so we don't need to initialize it further here.

        Ok(Self {
            vcpu: cpu,
            run: run_ptr,
            run_len: mmap_size,
        })
    }

    /// Get the architecture-specific representation of the current register
    /// values of this vCPU.
    #[inline(always)]
    pub fn get_regs(&self) -> Result<raw::kvm_regs> {
        self.vcpu.get_regs()
    }

    /// Set the architecture-specific representation of the current register
    /// values of this vCPU.
    #[inline(always)]
    pub fn set_regs(&self, new: &raw::kvm_regs) -> Result<()> {
        self.vcpu.set_regs(new)
    }

    /// Modify in place the architecturte-specific register values of this vCPU.
    #[inline]
    pub fn modify_regs<R>(&self, f: impl FnOnce(&mut raw::kvm_regs) -> R) -> Result<R> {
        let mut regs = self.get_regs()?;
        let ret = f(&mut regs);
        self.set_regs(&regs)?;
        Ok(ret)
    }

    #[inline]
    pub fn with_raw_run_state<R>(&mut self, f: impl FnOnce(&mut raw::kvm_run) -> R) -> R {
        f(unsafe { &mut *self.run })
    }

    /// Run the VCPU until it exits.
    #[inline(always)]
    pub fn run_raw(&mut self) -> Result<()> {
        self.vcpu.f.ioctl(ioctl::vcpu::KVM_RUN, ())?;
        Ok(())
    }
}

impl<'a> Drop for VirtualCpuRunner<'a> {
    /// [`VirtualCpuRunner`] automatically releases its kernel shared memory
    /// mapping when dropped, and will panic if that fails.
    fn drop(&mut self) {
        unsafe { linux_unsafe::munmap(self.run as *mut linux_unsafe::void, self.run_len) }.unwrap();
    }
}

/// A page-aligned host memory region that can be mapped into the guest memory
/// space of a [`VirtualMachine`].
#[derive(Debug)]
pub struct MemoryRegion {
    addr: *mut linux_unsafe::void,
    length: linux_unsafe::size_t,
}

impl MemoryRegion {
    /// Attempts to allocate a new memory region of a given size.
    #[inline]
    pub fn new(length: linux_unsafe::size_t) -> Result<Self> {
        let addr = unsafe {
            linux_unsafe::mmap(
                core::ptr::null_mut(),
                length,
                0x1 | 0x2,  // PROT_READ | PROT_WRITE
                0x1 | 0x20, // MAP_SHARED | MAP_ANONYMOUS
                -1,         // no fd, because MAP_ANONYMOUS
                0,
            )
        }?;
        Ok(Self { addr, length })
    }

    /// Returns a view of the memory region as a mutable slice, which
    /// the caller can then modify to populate the memory area.
    pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [u8] {
        // Safety: Caller can't interact with the memory region in any other
        // way while still holding the mutable borrow we return here, so
        // nothing else should access it.
        unsafe { core::slice::from_raw_parts_mut(self.addr as *mut u8, self.length) }
    }
}

impl<'a> Drop for MemoryRegion {
    /// [`MemoryRegion`] automatically releases its memory mapping when dropped,
    /// and will panic if that fails.
    fn drop(&mut self) {
        unsafe { linux_unsafe::munmap(self.addr, self.length) }.unwrap();
    }
}