1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#![cfg_attr(feature = "const_mut_refs", feature(const_mut_refs))]
#![cfg_attr(
    feature = "alloc_ref",
    feature(allocator_api, alloc_layout_extra, nonnull_slice_from_raw_parts)
)]
#![no_std]

#[cfg(test)]
#[macro_use]
extern crate std;

#[cfg(feature = "use_spin")]
extern crate spinning_top;

#[cfg(feature = "use_spin")]
use core::alloc::GlobalAlloc;
use core::alloc::Layout;
#[cfg(feature = "alloc_ref")]
use core::alloc::{AllocError, Allocator};
use core::mem::MaybeUninit;
#[cfg(feature = "use_spin")]
use core::ops::Deref;
use core::ptr::NonNull;
#[cfg(test)]
use hole::Hole;
use hole::HoleList;
#[cfg(feature = "use_spin")]
use spinning_top::Spinlock;

pub mod hole;
#[cfg(test)]
mod test;

/// A fixed size heap backed by a linked list of free memory blocks.
pub struct Heap {
    used: usize,
    holes: HoleList,
}

unsafe impl Send for Heap {}

impl Heap {
    /// Creates an empty heap. All allocate calls will return `None`.
    #[cfg(not(feature = "const_mut_refs"))]
    pub fn empty() -> Heap {
        Heap {
            used: 0,
            holes: HoleList::empty(),
        }
    }

    #[cfg(feature = "const_mut_refs")]
    pub const fn empty() -> Heap {
        Heap {
            used: 0,
            holes: HoleList::empty(),
        }
    }

    /// Initializes an empty heap
    ///
    /// # Safety
    ///
    /// This function must be called at most once and must only be used on an
    /// empty heap.
    ///
    /// The bottom address must be valid and the memory in the
    /// `[heap_bottom, heap_bottom + heap_size)` range must not be used for anything else.
    /// This function is unsafe because it can cause undefined behavior if the given address
    /// is invalid.
    ///
    /// The provided memory range must be valid for the `'static` lifetime.
    pub unsafe fn init(&mut self, heap_bottom: *mut u8, heap_size: usize) {
        self.used = 0;
        self.holes = HoleList::new(heap_bottom, heap_size);
    }

    /// Initialize an empty heap with provided memory.
    ///
    /// The caller is responsible for procuring a region of raw memory that may be utilized by the
    /// allocator. This might be done via any method such as (unsafely) taking a region from the
    /// program's memory, from a mutable static, or by allocating and leaking such memory from
    /// another allocator.
    ///
    /// The latter method may be especially useful if the underlying allocator does not perform
    /// deallocation (e.g. a simple bump allocator). Then the overlaid linked-list-allocator can
    /// provide memory reclamation.
    ///
    /// # Panics
    ///
    /// This method panics if the heap is already initialized.
    pub fn init_from_slice(&mut self, mem: &'static mut [MaybeUninit<u8>]) {
        assert!(
            self.bottom().is_null(),
            "The heap has already been initialized."
        );
        let size = mem.len();
        let address = mem.as_mut_ptr().cast();
        // SAFETY: All initialization requires the bottom address to be valid, which implies it
        // must not be 0. Initially the address is 0. The assertion above ensures that no
        // initialization had been called before.
        // The given address and size is valid according to the safety invariants of the mutable
        // reference handed to us by the caller.
        unsafe { self.init(address, size) }
    }

    /// Creates a new heap with the given `bottom` and `size`.
    ///
    /// # Safety
    ///
    /// The bottom address must be valid and the memory in the
    /// `[heap_bottom, heap_bottom + heap_size)` range must not be used for anything else.
    /// This function is unsafe because it can cause undefined behavior if the given address
    /// is invalid.
    ///
    /// The provided memory range must be valid for the `'static` lifetime.
    pub unsafe fn new(heap_bottom: *mut u8, heap_size: usize) -> Heap {
        if heap_size < HoleList::min_size() {
            Self::empty()
        } else {
            Heap {
                used: 0,
                holes: HoleList::new(heap_bottom, heap_size),
            }
        }
    }

    /// Creates a new heap from a slice of raw memory.
    ///
    /// This has the same effect as [`init_from_slice`] on an empty heap, but it is combined into a
    /// single operation that can not panic.
    pub fn from_slice(mem: &'static mut [MaybeUninit<u8>]) -> Heap {
        let size = mem.len();
        let address = mem.as_mut_ptr().cast();
        // SAFETY: The given address and size is valid according to the safety invariants of the
        // mutable reference handed to us by the caller.
        unsafe { Self::new(address, size) }
    }

    /// Allocates a chunk of the given size with the given alignment. Returns a pointer to the
    /// beginning of that chunk if it was successful. Else it returns `None`.
    /// This function scans the list of free memory blocks and uses the first block that is big
    /// enough. The runtime is in O(n) where n is the number of free blocks, but it should be
    /// reasonably fast for small allocations.
    //
    // NOTE: We could probably replace this with an `Option` instead of a `Result` in a later
    // release to remove this clippy warning
    #[allow(clippy::result_unit_err)]
    pub fn allocate_first_fit(&mut self, layout: Layout) -> Result<NonNull<u8>, ()> {
        match self.holes.allocate_first_fit(layout) {
            Ok((ptr, aligned_layout)) => {
                self.used += aligned_layout.size();
                Ok(ptr)
            }
            Err(err) => Err(err),
        }
    }

    /// Frees the given allocation. `ptr` must be a pointer returned
    /// by a call to the `allocate_first_fit` function with identical size and alignment.
    ///
    /// This function walks the list of free memory blocks and inserts the freed block at the
    /// correct place. If the freed block is adjacent to another free block, the blocks are merged
    /// again. This operation is in `O(n)` since the list needs to be sorted by address.
    ///
    /// # Safety
    ///
    /// `ptr` must be a pointer returned by a call to the [`allocate_first_fit`] function with
    /// identical layout. Undefined behavior may occur for invalid arguments.
    pub unsafe fn deallocate(&mut self, ptr: NonNull<u8>, layout: Layout) {
        self.used -= self.holes.deallocate(ptr, layout).size();
    }

    /// Returns the bottom address of the heap.
    pub fn bottom(&self) -> *mut u8 {
        self.holes.bottom
    }

    /// Returns the size of the heap.
    pub fn size(&self) -> usize {
        (self.top() as usize) - (self.bottom() as usize)
    }

    /// Return the top address of the heap
    pub fn top(&self) -> *mut u8 {
        self.holes.top
    }

    /// Returns the size of the used part of the heap
    pub fn used(&self) -> usize {
        self.used
    }

    /// Returns the size of the free part of the heap
    pub fn free(&self) -> usize {
        self.size() - self.used
    }

    /// Extends the size of the heap by creating a new hole at the end
    ///
    /// # Safety
    ///
    /// The amount of data given in `by` MUST exist directly after the original
    /// range of data provided when constructing the [Heap]. The additional data
    /// must have the same lifetime of the original range of data.
    pub unsafe fn extend(&mut self, by: usize) {
        let top = self.top();
        let layout = Layout::from_size_align(by, 1).unwrap();
        self.holes
            .deallocate(NonNull::new_unchecked(top as *mut u8), layout);
        self.holes.top = self.holes.top.add(by);
    }
}

#[cfg(all(feature = "alloc_ref", feature = "use_spin"))]
unsafe impl Allocator for LockedHeap {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        if layout.size() == 0 {
            return Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0));
        }
        match self.0.lock().allocate_first_fit(layout) {
            Ok(ptr) => Ok(NonNull::slice_from_raw_parts(ptr, layout.size())),
            Err(()) => Err(AllocError),
        }
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        if layout.size() != 0 {
            self.0.lock().deallocate(ptr, layout);
        }
    }
}

#[cfg(feature = "use_spin")]
pub struct LockedHeap(Spinlock<Heap>);

#[cfg(feature = "use_spin")]
impl LockedHeap {
    /// Creates an empty heap. All allocate calls will return `None`.
    #[cfg(feature = "use_spin_nightly")]
    pub const fn empty() -> LockedHeap {
        LockedHeap(Spinlock::new(Heap::empty()))
    }

    /// Creates an empty heap. All allocate calls will return `None`.
    #[cfg(not(feature = "use_spin_nightly"))]
    pub fn empty() -> LockedHeap {
        LockedHeap(Spinlock::new(Heap::empty()))
    }

    /// Creates a new heap with the given `bottom` and `size`.
    ///
    /// # Safety
    ///
    /// The bottom address must be valid and the memory in the
    /// `[heap_bottom, heap_bottom + heap_size)` range must not be used for anything else.
    /// This function is unsafe because it can cause undefined behavior if the given address
    /// is invalid.
    ///
    /// The provided memory range must be valid for the `'static` lifetime.
    pub unsafe fn new(heap_bottom: *mut u8, heap_size: usize) -> LockedHeap {
        LockedHeap(Spinlock::new(Heap {
            used: 0,
            holes: HoleList::new(heap_bottom, heap_size),
        }))
    }
}

#[cfg(feature = "use_spin")]
impl Deref for LockedHeap {
    type Target = Spinlock<Heap>;

    fn deref(&self) -> &Spinlock<Heap> {
        &self.0
    }
}

#[cfg(feature = "use_spin")]
unsafe impl GlobalAlloc for LockedHeap {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        self.0
            .lock()
            .allocate_first_fit(layout)
            .ok()
            .map_or(core::ptr::null_mut(), |allocation| allocation.as_ptr())
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        self.0
            .lock()
            .deallocate(NonNull::new_unchecked(ptr), layout)
    }
}

/// Align downwards. Returns the greatest x with alignment `align`
/// so that x <= addr. The alignment must be a power of 2.
pub fn align_down_size(size: usize, align: usize) -> usize {
    if align.is_power_of_two() {
        size & !(align - 1)
    } else if align == 0 {
        size
    } else {
        panic!("`align` must be a power of 2");
    }
}

pub fn align_up_size(size: usize, align: usize) -> usize {
    align_down_size(size + align - 1, align)
}

/// Align upwards. Returns the smallest x with alignment `align`
/// so that x >= addr. The alignment must be a power of 2.
pub fn align_up(addr: *mut u8, align: usize) -> *mut u8 {
    let offset = addr.align_offset(align);
    addr.wrapping_add(offset)
}