1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
use super::{
    super::traits::{Predict, PredictInplace},
    iter::{ChunksIter, DatasetIter, Iter},
    AsSingleTargets, AsTargets, AsTargetsMut, CountedTargets, Dataset, DatasetBase, DatasetView,
    Float, FromTargetArray, Label, Labels, Records, Result, TargetDim,
};
use crate::traits::Fit;
use ndarray::{concatenate, prelude::*, Data, DataMut, Dimension};
use rand::{seq::SliceRandom, Rng};
use std::collections::HashMap;
use std::ops::AddAssign;

/// Implementation without constraints on records and targets
///
/// This implementation block provides methods for the creation and mutation of datasets. This
/// includes swapping the targets, return the records etc.
impl<R: Records, S> DatasetBase<R, S> {
    /// Create a new dataset from records and targets
    ///
    /// # Example
    ///
    /// ```ignore
    /// let dataset = Dataset::new(records, targets);
    /// ```
    pub fn new(records: R, targets: S) -> DatasetBase<R, S> {
        let targets = targets;

        DatasetBase {
            records,
            targets,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }

    /// Returns reference to targets
    pub fn targets(&self) -> &S {
        &self.targets
    }

    /// Returns optionally weights
    pub fn weights(&self) -> Option<&[f32]> {
        if !self.weights.is_empty() {
            Some(self.weights.as_slice().unwrap())
        } else {
            None
        }
    }

    /// Return a single weight
    ///
    /// The weight of the `idx`th observation is returned. If no weight is specified, then all
    /// observations are unweighted with default value `1.0`.
    pub fn weight_for(&self, idx: usize) -> f32 {
        self.weights.get(idx).copied().unwrap_or(1.0)
    }

    /// Returns feature names
    ///
    /// A feature name gives a human-readable string describing the purpose of a single feature.
    /// This allow the reader to understand its purpose while analysing results, for example
    /// correlation analysis or feature importance.
    pub fn feature_names(&self) -> Vec<String> {
        if !self.feature_names.is_empty() {
            self.feature_names.clone()
        } else {
            (0..self.records.nfeatures())
                .map(|idx| format!("feature-{}", idx))
                .collect()
        }
    }

    /// Return records of a dataset
    ///
    /// The records are data points from which predictions are made. This functions returns a
    /// reference to the record field.
    pub fn records(&self) -> &R {
        &self.records
    }

    /// Updates the records of a dataset
    ///
    /// This function overwrites the records in a dataset. It also invalidates the weights and
    /// feature names.
    pub fn with_records<T: Records>(self, records: T) -> DatasetBase<T, S> {
        DatasetBase {
            records,
            targets: self.targets,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }

    /// Updates the targets of a dataset
    ///
    /// This function overwrites the targets in a dataset.
    pub fn with_targets<T>(self, targets: T) -> DatasetBase<R, T> {
        DatasetBase {
            records: self.records,
            targets,
            weights: self.weights,
            feature_names: self.feature_names,
        }
    }

    /// Updates the weights of a dataset
    pub fn with_weights(mut self, weights: Array1<f32>) -> DatasetBase<R, S> {
        self.weights = weights;

        self
    }

    /// Updates the feature names of a dataset
    pub fn with_feature_names<I: Into<String>>(mut self, names: Vec<I>) -> DatasetBase<R, S> {
        let feature_names = names.into_iter().map(|x| x.into()).collect();

        self.feature_names = feature_names;

        self
    }
}

impl<L, R: Records, T: AsTargets<Elem = L>> DatasetBase<R, T> {
    /// Map targets with a function `f`
    ///
    /// # Example
    ///
    /// ```
    /// let dataset = linfa_datasets::winequality()
    ///     .map_targets(|x| *x > 6);
    ///
    /// // dataset has now boolean targets
    /// println!("{:?}", dataset.targets());
    /// ```
    ///
    /// # Returns
    ///
    /// A modified dataset with new target type.
    ///
    pub fn map_targets<S, G: FnMut(&L) -> S>(self, fnc: G) -> DatasetBase<R, Array<S, T::Ix>> {
        let DatasetBase {
            records,
            targets,
            weights,
            feature_names,
            ..
        } = self;

        let targets = targets.as_targets();

        DatasetBase {
            records,
            targets: targets.map(fnc),
            weights,
            feature_names,
        }
    }

    /// Return the number of targets in the dataset
    ///
    /// # Example
    ///
    /// ```
    /// let dataset = linfa_datasets::winequality();
    ///
    /// println!("#targets {}", dataset.ntargets());
    /// ```
    ///
    pub fn ntargets(&self) -> usize {
        if T::Ix::NDIM.unwrap() == 1 {
            1
        } else {
            self.targets.as_targets().len_of(Axis(1))
        }
    }
}

impl<'a, F, L, D, T> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = L>,
{
    /// Iterate over observations
    ///
    /// This function creates an iterator which produces tuples of data points and target value. The
    /// iterator runs once for each data point and, while doing so, holds an reference to the owned
    /// dataset.
    ///
    /// For multi-target datasets, the yielded target value is `ArrayView1` consisting of the
    /// different targets. For single-target datasets, the target value is `ArrayView0` containing
    /// the single target.
    ///
    /// # Example
    /// ```
    /// let dataset = linfa_datasets::iris();
    ///
    /// for (x, y) in dataset.sample_iter() {
    ///     println!("{} => {}", x, y);
    /// }
    /// ```
    pub fn sample_iter(&'a self) -> Iter<'a, '_, F, T::Elem, T::Ix> {
        Iter::new(self.records.view(), self.targets.as_targets())
    }
}

impl<'a, F: 'a, L: 'a, D, T> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = L> + FromTargetArray<'a>,
{
    /// Creates a view of a dataset
    pub fn view(&'a self) -> DatasetBase<ArrayView2<'a, F>, T::View> {
        let records = self.records().view();
        let targets = T::new_targets_view(self.as_targets());

        DatasetBase::new(records, targets)
            .with_feature_names(self.feature_names.clone())
            .with_weights(self.weights.clone())
    }

    /// Iterate over features
    ///
    /// This iterator produces dataset views with only a single feature, while the set of targets remain
    /// complete. It can be useful to compare each feature individual to all targets.
    pub fn feature_iter(&'a self) -> DatasetIter<'a, '_, ArrayBase<D, Ix2>, T> {
        DatasetIter::new(self, true)
    }

    /// Iterate over targets
    ///
    /// This functions creates an iterator which produces dataset views complete records, but only
    /// a single target each. Useful to train multiple single target models for a multi-target
    /// dataset.
    pub fn target_iter(&'a self) -> DatasetIter<'a, '_, ArrayBase<D, Ix2>, T> {
        DatasetIter::new(self, false)
    }
}

impl<L, R: Records, T: AsTargets<Elem = L>> AsTargets for DatasetBase<R, T> {
    type Elem = L;
    type Ix = T::Ix;

    fn as_targets(&self) -> ArrayView<Self::Elem, Self::Ix> {
        self.targets.as_targets()
    }
}

impl<L, R: Records, T: AsTargetsMut<Elem = L>> AsTargetsMut for DatasetBase<R, T> {
    type Elem = L;
    type Ix = T::Ix;

    fn as_targets_mut(&mut self) -> ArrayViewMut<Self::Elem, Self::Ix> {
        self.targets.as_targets_mut()
    }
}

#[allow(clippy::type_complexity)]
impl<'a, L: 'a, F, T> DatasetBase<ArrayView2<'a, F>, T>
where
    T: AsTargets<Elem = L> + FromTargetArray<'a>,
{
    /// Split dataset into two disjoint chunks
    ///
    /// This function splits the observations in a dataset into two disjoint chunks. The splitting
    /// threshold is calculated with the `ratio`. For example a ratio of `0.9` allocates 90% to the
    /// first chunks and 9% to the second. This is often used in training, validation splitting
    /// procedures.
    pub fn split_with_ratio(
        &'a self,
        ratio: f32,
    ) -> (
        DatasetBase<ArrayView2<'a, F>, T::View>,
        DatasetBase<ArrayView2<'a, F>, T::View>,
    ) {
        let n = (self.nsamples() as f32 * ratio).ceil() as usize;
        let (records_first, records_second) = self.records.view().split_at(Axis(0), n);
        let (targets_first, targets_second) = self.targets.as_targets().split_at(Axis(0), n);

        let targets_first = T::new_targets_view(targets_first);
        let targets_second = T::new_targets_view(targets_second);

        let (first_weights, second_weights) = if self.weights.len() == self.nsamples() {
            let a = self.weights.slice(s![..n]).to_vec();
            let b = self.weights.slice(s![n..]).to_vec();

            (Array1::from(a), Array1::from(b))
        } else {
            (Array1::zeros(0), Array1::zeros(0))
        };
        let dataset1 = DatasetBase::new(records_first, targets_first)
            .with_weights(first_weights)
            .with_feature_names(self.feature_names.clone());

        let dataset2 = DatasetBase::new(records_second, targets_second)
            .with_weights(second_weights)
            .with_feature_names(self.feature_names.clone());

        (dataset1, dataset2)
    }
}

impl<L: Label, T: Labels<Elem = L>, R: Records> Labels for DatasetBase<R, T> {
    type Elem = L;

    fn label_count(&self) -> Vec<HashMap<L, usize>> {
        self.targets().label_count()
    }
}

#[allow(clippy::type_complexity)]
impl<'a, 'b: 'a, F, L: Label, T, D> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsSingleTargets<Elem = L> + Labels<Elem = L>,
{
    /// Produce N boolean targets from multi-class targets
    ///
    /// Some algorithms (like SVM) don't support multi-class targets. This function splits a
    /// dataset into multiple binary single-target views of the same dataset.
    pub fn one_vs_all(
        &self,
    ) -> Result<
        Vec<(
            L,
            DatasetBase<ArrayView2<'_, F>, CountedTargets<bool, Array1<bool>>>,
        )>,
    > {
        let targets = self.targets().as_single_targets();

        Ok(self
            .labels()
            .into_iter()
            .map(|label| {
                let targets = targets.iter().map(|x| x == &label).collect::<Array1<_>>();

                let targets = CountedTargets::new(targets);

                (
                    label,
                    DatasetBase::new(self.records().view(), targets)
                        .with_feature_names(self.feature_names.clone())
                        .with_weights(self.weights.clone()),
                )
            })
            .collect())
    }
}

impl<L: Label, R: Records, S: AsTargets<Elem = L>> DatasetBase<R, S> {
    /// Calculates label frequencies from a dataset while masking certain samples.
    ///
    /// ### Parameters
    ///
    /// * `mask`: a boolean array that specifies which samples to include in the count
    ///
    /// ### Returns
    ///
    /// A mapping of the Dataset's samples to their frequencies
    pub fn label_frequencies_with_mask(&self, mask: &[bool]) -> HashMap<L, f32> {
        let mut freqs = HashMap::new();

        for (elms, val) in self
            .targets
            .as_targets()
            .axis_iter(Axis(0))
            .enumerate()
            .filter(|(i, _)| *mask.get(*i).unwrap_or(&true))
            .map(|(i, x)| (x, self.weight_for(i)))
        {
            for elm in elms {
                if !freqs.contains_key(elm) {
                    freqs.insert(elm.clone(), 0.0);
                }

                *freqs.get_mut(elm).unwrap() += val;
            }
        }

        freqs
    }

    /// Calculates label frequencies from a dataset
    pub fn label_frequencies(&self) -> HashMap<L, f32> {
        self.label_frequencies_with_mask(&[])
    }
}

impl<F, D: Data<Elem = F>, I: Dimension> From<ArrayBase<D, I>>
    for DatasetBase<ArrayBase<D, I>, Array1<()>>
{
    fn from(records: ArrayBase<D, I>) -> Self {
        let empty_targets = Array1::default(records.len_of(Axis(0)));
        DatasetBase {
            records,
            targets: empty_targets,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }
}

impl<F, E, D, S, I: TargetDim> From<(ArrayBase<D, Ix2>, ArrayBase<S, I>)>
    for DatasetBase<ArrayBase<D, Ix2>, ArrayBase<S, I>>
where
    D: Data<Elem = F>,
    S: Data<Elem = E>,
{
    fn from(rec_tar: (ArrayBase<D, Ix2>, ArrayBase<S, I>)) -> Self {
        DatasetBase {
            records: rec_tar.0,
            targets: rec_tar.1,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }
}

impl<'b, F: Clone, E: Copy + 'b, D, T> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: FromTargetArray<'b, Elem = E>,
    T::Owned: AsTargets,
{
    /// Apply bootstrapping for samples and features
    ///
    /// Bootstrap aggregating is used for sub-sample generation and improves the accuracy and
    /// stability of machine learning algorithms. It samples data uniformly with replacement and
    /// generates datasets where elements may be shared. This selects a subset of observations as
    /// well as features.
    ///
    /// # Parameters
    ///
    ///  * `sample_feature_size`: The number of samples and features per bootstrap
    ///  * `rng`: The random number generator used in the sampling procedure
    ///
    ///  # Returns
    ///
    ///  An infinite Iterator yielding at each step a new bootstrapped dataset
    ///
    pub fn bootstrap<R: Rng>(
        &'b self,
        sample_feature_size: (usize, usize),
        rng: &'b mut R,
    ) -> impl Iterator<Item = DatasetBase<Array2<F>, <T as FromTargetArray<'b>>::Owned>> + 'b {
        std::iter::repeat(()).map(move |_| {
            // sample with replacement
            let indices = (0..sample_feature_size.0)
                .map(|_| rng.gen_range(0..self.nsamples()))
                .collect::<Vec<_>>();

            let records = self.records().select(Axis(0), &indices);
            let targets = T::new_targets(self.as_targets().select(Axis(0), &indices));

            let indices = (0..sample_feature_size.1)
                .map(|_| rng.gen_range(0..self.nfeatures()))
                .collect::<Vec<_>>();

            let records = records.select(Axis(1), &indices);

            DatasetBase::new(records, targets)
        })
    }

    /// Apply sample bootstrapping
    ///
    /// Bootstrap aggregating is used for sub-sample generation and improves the accuracy and
    /// stability of machine learning algorithms. It samples data uniformly with replacement and
    /// generates datasets where elements may be shared. Only a sample subset is selected which
    /// retains all features and targets.
    ///
    /// # Parameters
    ///
    ///  * `num_samples`: The number of samples per bootstrap
    ///  * `rng`: The random number generator used in the sampling procedure
    ///
    ///  # Returns
    ///
    ///  An infinite Iterator yielding at each step a new bootstrapped dataset
    ///
    pub fn bootstrap_samples<R: Rng>(
        &'b self,
        num_samples: usize,
        rng: &'b mut R,
    ) -> impl Iterator<Item = DatasetBase<Array2<F>, <T as FromTargetArray<'b>>::Owned>> + 'b {
        std::iter::repeat(()).map(move |_| {
            // sample with replacement
            let indices = (0..num_samples)
                .map(|_| rng.gen_range(0..self.nsamples()))
                .collect::<Vec<_>>();

            let records = self.records().select(Axis(0), &indices);
            let targets = T::new_targets(self.as_targets().select(Axis(0), &indices));

            DatasetBase::new(records, targets)
        })
    }

    /// Apply feature bootstrapping
    ///
    /// Bootstrap aggregating is used for sub-sample generation and improves the accuracy and
    /// stability of machine learning algorithms. It samples data uniformly with replacement and
    /// generates datasets where elements may be shared. Only a feature subset is selected while
    /// retaining all samples and targets.
    ///
    /// # Parameters
    ///
    ///  * `num_features`: The number of features per bootstrap
    ///  * `rng`: The random number generator used in the sampling procedure
    ///
    ///  # Returns
    ///
    ///  An infinite Iterator yielding at each step a new bootstrapped dataset
    ///
    pub fn bootstrap_features<R: Rng>(
        &'b self,
        num_features: usize,
        rng: &'b mut R,
    ) -> impl Iterator<Item = DatasetBase<Array2<F>, <T as FromTargetArray<'b>>::Owned>> + 'b {
        std::iter::repeat(()).map(move |_| {
            let targets = T::new_targets(self.as_targets().to_owned());

            let indices = (0..num_features)
                .map(|_| rng.gen_range(0..self.nfeatures()))
                .collect::<Vec<_>>();

            let records = self.records.select(Axis(1), &indices);

            DatasetBase::new(records, targets)
        })
    }

    /// Produces a shuffled version of the current Dataset.
    ///
    /// ### Parameters
    ///
    /// * `rng`: the random number generator that will be used to shuffle the samples
    ///
    /// ### Returns
    ///
    /// A new shuffled version of the current Dataset
    pub fn shuffle<R: Rng>(&self, rng: &mut R) -> DatasetBase<Array2<F>, T::Owned> {
        let mut indices = (0..self.nsamples()).collect::<Vec<_>>();
        indices.shuffle(rng);

        let records = self.records().select(Axis(0), &indices);
        let targets = self.as_targets().select(Axis(0), &indices);
        let targets = T::new_targets(targets);

        DatasetBase::new(records, targets)
    }

    #[allow(clippy::type_complexity)]
    /// Performs K-folding on the dataset.
    ///
    /// The dataset is divided into `k` "folds", each containing `(dataset size)/k` samples, used
    /// to generate `k` training-validation dataset pairs. Each pair contains a validation
    /// `Dataset` with `k` samples, the ones contained in the i-th fold, and a training `Dataset`
    /// composed by the union of all the samples in the remaining folds.
    ///
    /// ### Parameters
    ///
    /// * `k`: the number of folds to apply
    ///
    /// ### Returns
    ///
    /// A vector of `k` training-validation Dataset pairs.
    ///
    /// ### Example
    ///
    /// ```rust
    /// use linfa::dataset::DatasetView;
    /// use ndarray::{Ix1, array};
    ///
    /// let records = array![[1.,1.], [2.,1.], [3.,2.], [4.,1.],[5., 3.], [6.,2.]];
    /// let targets = array![1, 1, 0, 1, 0, 0];
    ///
    /// let dataset : DatasetView<f64, usize, Ix1> = (records.view(), targets.view()).into();
    /// let accuracies = dataset.fold(3).into_iter().map(|(train, valid)| {
    ///     // Here you can train your model and perform validation
    ///     
    ///     // let model = params.fit(&dataset);
    ///     // let predi = model.predict(&valid);
    ///     // predi.confusion_matrix(&valid).accuracy()  
    /// });
    /// ```
    ///  
    pub fn fold(
        &self,
        k: usize,
    ) -> Vec<(
        DatasetBase<Array2<F>, T::Owned>,
        DatasetBase<Array2<F>, T::Owned>,
    )> {
        let targets = self.as_targets();
        let fold_size = targets.len() / k;
        let mut res = Vec::new();

        // Generates all k folds of records and targets
        let mut records_chunks: Vec<_> =
            self.records.axis_chunks_iter(Axis(0), fold_size).collect();
        let mut targets_chunks: Vec<_> = targets.axis_chunks_iter(Axis(0), fold_size).collect();

        // For each iteration, take the first chunk for both records and targets as the validation set and
        // concatenate all the other chunks to create the training set. In the end swap the first chunk with the
        // one in the next index so that it is ready for the next iteration
        for i in 0..k {
            let remaining_records = concatenate(Axis(0), &records_chunks.as_slice()[1..]).unwrap();
            let remaining_targets = concatenate(Axis(0), &targets_chunks.as_slice()[1..]).unwrap();

            res.push((
                // training
                DatasetBase::new(remaining_records, T::new_targets(remaining_targets)),
                // validation
                DatasetBase::new(
                    records_chunks[0].into_owned(),
                    T::new_targets(targets_chunks[0].clone().into_owned()),
                ),
            ));

            // swap
            if i < k - 1 {
                records_chunks.swap(0, i + 1);
                targets_chunks.swap(0, i + 1);
            }
        }
        res
    }

    pub fn sample_chunks<'a: 'b>(&'b self, chunk_size: usize) -> ChunksIter<'b, 'a, F, T> {
        ChunksIter::new(self.records().view(), &self.targets, chunk_size, Axis(0))
    }

    pub fn to_owned(&self) -> DatasetBase<Array2<F>, T::Owned> {
        DatasetBase::new(
            self.records().to_owned(),
            T::new_targets(self.as_targets().to_owned()),
        )
    }
}

macro_rules! assist_swap_array2 {
    ($slice: expr, $index: expr, $fold_size: expr, $features: expr) => {
        if $index != 0 {
            let adj_fold_size = $fold_size * $features;
            let start = adj_fold_size * $index;
            let (first_s, second_s) = $slice.split_at_mut(start);
            let (mut fold, _) = second_s.split_at_mut(adj_fold_size);
            first_s[..$fold_size * $features].swap_with_slice(&mut fold);
        }
    };
}

impl<'a, F: 'a + Clone, E: Copy + 'a, D, S, I: TargetDim>
    DatasetBase<ArrayBase<D, Ix2>, ArrayBase<S, I>>
where
    D: DataMut<Elem = F>,
    S: DataMut<Elem = E>,
{
    /// Performs k-folding cross validation on fittable algorithms.
    ///
    /// Given a dataset as input, a value of k and the desired params for the fittable
    /// algorithm, returns an iterator over the k trained models and the
    /// associated validation set.
    ///
    /// The models are trained according to a closure specified
    /// as an input.
    ///
    /// ## Parameters
    ///
    /// - `k`: the number of folds to apply to the dataset
    /// - `params`: the desired parameters for the fittable algorithm at hand
    /// - `fit_closure`: a closure of the type `(params, training_data) -> fitted_model`
    /// that will be used to produce the trained model for each fold. The training data given in input
    /// won't outlive the closure.
    ///
    /// ## Returns
    ///
    /// An iterator over couples `(trained_model, validation_set)`.
    ///
    /// ## Panics
    ///
    /// This method will panic for any of the following three reasons:
    ///
    /// - The value of `k` provided is not positive;
    /// - The value of `k` provided is greater than the total number of samples in the dataset;
    /// - The dataset's data is not stored contiguously and in standard order;
    ///
    /// ## Example
    /// ```rust
    /// use linfa::traits::Fit;
    /// use linfa::dataset::{Dataset, DatasetView, Records};
    /// use ndarray::{array, ArrayView1, ArrayView2, Ix1};
    /// use linfa::Error;
    ///
    /// struct MockFittable {}
    ///
    /// struct MockFittableResult {
    ///    mock_var: usize,
    /// }
    ///
    /// impl<'a> Fit<ArrayView2<'a,f64>, ArrayView1<'a, f64>, linfa::error::Error> for MockFittable {
    ///     type Object = MockFittableResult;
    ///
    ///     fn fit(&self, training_data: &DatasetView<f64, f64, Ix1>) -> Result<Self::Object, linfa::error::Error> {
    ///         Ok(MockFittableResult {
    ///             mock_var: training_data.nsamples(),
    ///         })
    ///     }
    /// }
    ///
    /// let records = array![[1.,1.], [2.,2.], [3.,3.], [4.,4.], [5.,5.]];
    /// let targets = array![1.,2.,3.,4.,5.];
    /// let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
    /// let params = MockFittable {};
    ///
    /// for (model,validation_set) in dataset.iter_fold(5, |v| params.fit(v).unwrap()){
    ///     // Here you can use `model` and `validation_set` to
    ///     // assert the performance of the chosen algorithm
    /// }
    /// ```
    pub fn iter_fold<O, C: Fn(&DatasetView<F, E, I>) -> O>(
        &'a mut self,
        k: usize,
        fit_closure: C,
    ) -> impl Iterator<Item = (O, DatasetBase<ArrayView2<F>, ArrayView<E, I>>)> {
        assert!(k > 0);
        assert!(k <= self.nsamples());
        let samples_count = self.nsamples();
        let fold_size = samples_count / k;

        let features = self.nfeatures();
        let targets = self.ntargets();
        let tshape = self.targets.raw_dim();

        let mut objs: Vec<O> = Vec::new();

        {
            let records_sl = self.records.as_slice_mut().unwrap();
            let mut targets_sl2 = self.targets.as_targets_mut();
            let targets_sl = targets_sl2.as_slice_mut().unwrap();

            for i in 0..k {
                assist_swap_array2!(records_sl, i, fold_size, features);
                assist_swap_array2!(targets_sl, i, fold_size, targets);

                {
                    let train = DatasetBase::new(
                        ArrayView2::from_shape(
                            (samples_count - fold_size, features),
                            records_sl.split_at(fold_size * features).1,
                        )
                        .unwrap(),
                        ArrayView::from_shape(
                            tshape.clone().nsamples(samples_count - fold_size),
                            targets_sl.split_at(fold_size * targets).1,
                        )
                        .unwrap(),
                    );

                    let obj = fit_closure(&train);
                    objs.push(obj);
                }

                assist_swap_array2!(records_sl, i, fold_size, features);
                assist_swap_array2!(targets_sl, i, fold_size, targets);
            }
        }

        objs.into_iter().zip(self.sample_chunks(fold_size))
    }

    /// Cross validation for single and multi-target algorithms
    ///
    /// Given a list of fittable models, cross validation is used to compare their performance
    /// according to some performance metric. To do so, k-folding is applied to the dataset and,
    /// for each fold, each model is trained on the training set and its performance is evaluated
    /// on the validation set. The performances collected for each model are then averaged over the
    /// number of folds.
    ///
    /// For single-target datasets, [`Dataset::cross_validate_single`] is recommended.
    ///
    /// ### Parameters:
    ///
    /// - `k`: the number of folds to apply
    /// - `parameters`: a list of models to compare
    /// - `eval`: closure used to evaluate the performance of each trained model. This closure is
    /// called on the model output and validation targets of each fold and outputs the performance
    /// score for each target. For single-target dataset the signature is `(Array1, Array1) ->
    /// Array0`. For multi-target dataset the signature is `(Array2, Array2) -> Array1`.
    ///
    /// ### Returns
    ///
    /// An array of model performances, for each model and each target, if no errors occur.
    /// For multi-target dataset, the array has dimensions `(n_models, n_targets)`. For
    /// single-target dataset, the array has dimensions `(n_models)`.
    /// Otherwise, it might return an Error in one of the following cases:
    ///
    /// - An error occurred during the fitting of one model
    /// - An error occurred inside the evaluation closure
    ///
    /// ### Example
    ///
    /// ```rust, ignore
    ///
    /// use linfa::prelude::*;
    /// use ndarray::arr0;
    /// # use ndarray::{array, ArrayView1, ArrayView2, Ix1};
    ///
    /// # struct MockFittable {}
    ///
    /// # struct MockFittableResult {
    /// #    mock_var: usize,
    /// # }
    ///
    /// # impl<'a> Fit<ArrayView2<'a,f64>, ArrayView1<'a, f64>, linfa::error::Error> for MockFittable {
    /// #     type Object = MockFittableResult;
    ///
    /// #     fn fit(&self, training_data: &DatasetView<f64, f64, Ix1>) -> Result<Self::Object, linfa::error::Error> {
    /// #         Ok(MockFittableResult {
    /// #             mock_var: training_data.nsamples(),
    /// #         })
    /// #     }
    /// # }
    ///
    /// # let model1 = MockFittable {};
    /// # let model2 = MockFittable {};
    ///
    /// // mutability needed for fast cross validation
    /// let mut dataset = linfa_datasets::diabetes();
    ///
    /// let models = vec![model1, model2];
    ///
    /// let r2_scores = dataset.cross_validate(5, &models, |prediction, truth| prediction.r2(truth).map(arr0))?;
    ///
    /// ```
    pub fn cross_validate<O, ER, M, FACC, C>(
        &'a mut self,
        k: usize,
        parameters: &[M],
        eval: C,
    ) -> std::result::Result<Array<FACC, I>, ER>
    where
        ER: std::error::Error + std::convert::From<crate::error::Error>,
        M: for<'c> Fit<ArrayView2<'c, F>, ArrayView<'c, E, I>, ER, Object = O>,
        O: for<'d> PredictInplace<ArrayView2<'a, F>, Array<E, I>>,
        FACC: Float,
        C: Fn(
            &Array<E, I>,
            &ArrayView<E, I>,
        ) -> std::result::Result<Array<FACC, I::Smaller>, crate::error::Error>,
    {
        let mut evaluations = Array::from_elem(
            self.targets.raw_dim().nsamples(parameters.len()),
            FACC::zero(),
        );
        let folds_evaluations: std::result::Result<Vec<_>, ER> = self
            .iter_fold(k, |train| {
                let fit_result: std::result::Result<Vec<_>, ER> =
                    parameters.iter().map(|p| p.fit(train)).collect();
                fit_result
            })
            .map(|(models, valid)| {
                let targets = valid.targets();
                let models = models?;
                // XXX diverges from master branch
                let mut eval_predictions =
                    Array::from_elem(targets.raw_dim().nsamples(models.len()), FACC::zero());
                for (i, model) in models.iter().enumerate() {
                    let predicted = model.predict(valid.records());
                    let eval_pred = match eval(&predicted, targets) {
                        Err(e) => Err(ER::from(e)),
                        Ok(res) => Ok(res),
                    }?;
                    eval_predictions
                        .index_axis_mut(Axis(0), i)
                        .add_assign(&eval_pred);
                }
                Ok(eval_predictions)
            })
            .collect();

        for fold_evaluation in folds_evaluations? {
            evaluations.add_assign(&fold_evaluation)
        }
        Ok(evaluations / FACC::from(k).unwrap())
    }
}

impl<'a, F: 'a + Clone, E: Copy + 'a, D, S> DatasetBase<ArrayBase<D, Ix2>, ArrayBase<S, Ix1>>
where
    D: DataMut<Elem = F>,
    S: DataMut<Elem = E>,
{
    /// Specialized version of `cross_validate` for single-target datasets. Allows the evaluation
    /// closure to return a float without wrapping it in `arr0`. See [`Dataset.cross_validate`] for
    /// more details.
    pub fn cross_validate_single<O, ER, M, FACC, C>(
        &'a mut self,
        k: usize,
        parameters: &[M],
        eval: C,
    ) -> std::result::Result<Array1<FACC>, ER>
    where
        ER: std::error::Error + std::convert::From<crate::error::Error>,
        M: for<'c> Fit<ArrayView2<'c, F>, ArrayView1<'c, E>, ER, Object = O>,
        O: for<'d> PredictInplace<ArrayView2<'a, F>, Array1<E>>,
        FACC: Float,
        C: Fn(&Array1<E>, &ArrayView1<E>) -> std::result::Result<FACC, crate::error::Error>,
    {
        self.cross_validate(k, parameters, |a, b| eval(a, b).map(arr0))
    }
}

impl<F, E, I: TargetDim> Dataset<F, E, I> {
    /// Split dataset into two disjoint chunks
    ///
    /// This function splits the observations in a dataset into two disjoint chunks. The splitting
    /// threshold is calculated with the `ratio`. If the input Dataset contains `n` samples then the
    /// two new Datasets will have respectively `n * ratio` and `n - (n*ratio)` samples.
    /// For example a ratio of `0.9` allocates 90% to the
    /// first chunks and 10% to the second. This is often used in training, validation splitting
    /// procedures.
    ///
    /// ### Parameters
    ///
    /// * `ratio`: the ratio of samples in the input Dataset to include in the first output one
    ///
    /// ### Returns
    ///  
    /// The input Dataset split into two according to the input ratio.
    ///
    /// ### Panics
    ///
    /// Panic occurs when the input record or targets are not in row-major layout.
    pub fn split_with_ratio(mut self, ratio: f32) -> (Self, Self) {
        assert!(
            self.records.is_standard_layout(),
            "records not in row-major layout"
        );
        assert!(
            self.targets.is_standard_layout(),
            "targets not in row-major layout"
        );

        let nfeatures = self.nfeatures();

        let n1 = (self.nsamples() as f32 * ratio).ceil() as usize;
        let n2 = self.nsamples() - n1;

        let feature_names = self.feature_names();

        // split records into two disjoint arrays
        let mut array_buf = self.records.into_raw_vec();
        let second_array_buf = array_buf.split_off(n1 * nfeatures);

        let first = Array2::from_shape_vec((n1, nfeatures), array_buf).unwrap();
        let second = Array2::from_shape_vec((n2, nfeatures), second_array_buf).unwrap();

        // split targets into two disjoint Vec
        let dim1 = self.targets.raw_dim().nsamples(n1);
        let dim2 = self.targets.raw_dim().nsamples(n2);
        let mut array_buf = self.targets.into_raw_vec();
        let second_array_buf = array_buf.split_off(dim1.size());

        let first_targets = Array::from_shape_vec(dim1, array_buf).unwrap();
        let second_targets = Array::from_shape_vec(dim2, second_array_buf).unwrap();

        // split weights into two disjoint Vec
        let second_weights = if self.weights.len() == n1 + n2 {
            let mut weights = self.weights.into_raw_vec();

            let weights2 = weights.split_off(n1);
            self.weights = Array1::from(weights);

            Array1::from(weights2)
        } else {
            Array1::zeros(0)
        };

        // create new datasets with attached weights
        let dataset1 = Dataset::new(first, first_targets)
            .with_weights(self.weights)
            .with_feature_names(feature_names.clone());
        let dataset2 = Dataset::new(second, second_targets)
            .with_weights(second_weights)
            .with_feature_names(feature_names);

        (dataset1, dataset2)
    }
}

impl<F, D, E, T, O> Predict<ArrayBase<D, Ix2>, DatasetBase<ArrayBase<D, Ix2>, T>> for O
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = E>,
    O: PredictInplace<ArrayBase<D, Ix2>, T>,
{
    fn predict(&self, records: ArrayBase<D, Ix2>) -> DatasetBase<ArrayBase<D, Ix2>, T> {
        let mut targets = self.default_target(&records);
        self.predict_inplace(&records, &mut targets);
        DatasetBase::new(records, targets)
    }
}

impl<F, R, T, E, S, O> Predict<DatasetBase<R, T>, DatasetBase<R, S>> for O
where
    R: Records<Elem = F>,
    S: AsTargets<Elem = E>,
    O: PredictInplace<R, S>,
{
    fn predict(&self, ds: DatasetBase<R, T>) -> DatasetBase<R, S> {
        let mut targets = self.default_target(&ds.records);
        self.predict_inplace(&ds.records, &mut targets);
        DatasetBase::new(ds.records, targets)
    }
}

impl<'a, F, R, T, S, O> Predict<&'a DatasetBase<R, T>, S> for O
where
    R: Records<Elem = F>,
    O: PredictInplace<R, S>,
{
    fn predict(&self, ds: &'a DatasetBase<R, T>) -> S {
        let mut targets = self.default_target(&ds.records);
        self.predict_inplace(&ds.records, &mut targets);
        targets
    }
}

impl<'a, F, D, DM, T, O> Predict<&'a ArrayBase<D, DM>, T> for O
where
    D: Data<Elem = F>,
    DM: Dimension,
    O: PredictInplace<ArrayBase<D, DM>, T>,
{
    fn predict(&self, records: &'a ArrayBase<D, DM>) -> T {
        let mut targets = self.default_target(records);
        self.predict_inplace(records, &mut targets);
        targets
    }
}

impl<L: Label, S: Labels<Elem = L>> CountedTargets<L, S> {
    pub fn new(targets: S) -> Self {
        let labels = targets.label_count();

        CountedTargets { targets, labels }
    }
}