1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
use super::{
    super::traits::{Predict, PredictInplace},
    iter::{ChunksIter, DatasetIter, Iter},
    AsTargets, AsTargetsMut, CountedTargets, Dataset, DatasetBase, DatasetView, Float,
    FromTargetArray, Label, Labels, Records, Result,
};
use crate::traits::Fit;
use ndarray::{
    concatenate, s, Array, Array1, Array2, ArrayBase, ArrayView1, ArrayView2, ArrayViewMut2, Axis,
    Data, DataMut, Dimension, Ix1, Ix2, OwnedRepr,
};
use rand::{seq::SliceRandom, Rng};
use std::collections::HashMap;
use std::ops::AddAssign;

/// Implementation without constraints on records and targets
///
/// This implementation block provides methods for the creation and mutation of datasets. This
/// includes swapping the targets, return the records etc.
impl<R: Records, S> DatasetBase<R, S> {
    /// Create a new dataset from records and targets
    ///
    /// # Example
    ///
    /// ```ignore
    /// let dataset = Dataset::new(records, targets);
    /// ```
    pub fn new<T: IntoTargets<S>>(records: R, targets: T) -> DatasetBase<R, S> {
        let targets = targets.into();

        DatasetBase {
            records,
            targets,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }

    /// Returns reference to targets
    pub fn targets(&self) -> &S {
        &self.targets
    }

    /// Returns optionally weights
    pub fn weights(&self) -> Option<&[f32]> {
        if !self.weights.is_empty() {
            Some(self.weights.as_slice().unwrap())
        } else {
            None
        }
    }

    /// Return a single weight
    ///
    /// The weight of the `idx`th observation is returned. If no weight is specified, then all
    /// observations are unweighted with default value `1.0`.
    pub fn weight_for(&self, idx: usize) -> f32 {
        self.weights.get(idx).copied().unwrap_or(1.0)
    }

    /// Returns feature names
    ///
    /// A feature name gives a human-readable string describing the purpose of a single feature.
    /// This allow the reader to understand its purpose while analysing results, for example
    /// correlation analysis or feature importance.
    pub fn feature_names(&self) -> Vec<String> {
        if !self.feature_names.is_empty() {
            self.feature_names.clone()
        } else {
            (0..self.records.nfeatures())
                .map(|idx| format!("feature-{}", idx))
                .collect()
        }
    }

    /// Return records of a dataset
    ///
    /// The records are data points from which predictions are made. This functions returns a
    /// reference to the record field.
    pub fn records(&self) -> &R {
        &self.records
    }

    /// Updates the records of a dataset
    ///
    /// This function overwrites the records in a dataset. It also invalidates the weights and
    /// feature names.
    pub fn with_records<T: Records>(self, records: T) -> DatasetBase<T, S> {
        DatasetBase {
            records,
            targets: self.targets,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }

    /// Updates the targets of a dataset
    ///
    /// This function overwrites the targets in a dataset.
    pub fn with_targets<T>(self, targets: T) -> DatasetBase<R, T> {
        DatasetBase {
            records: self.records,
            targets,
            weights: self.weights,
            feature_names: self.feature_names,
        }
    }

    /// Updates the weights of a dataset
    pub fn with_weights(mut self, weights: Array1<f32>) -> DatasetBase<R, S> {
        self.weights = weights;

        self
    }

    /// Updates the feature names of a dataset
    pub fn with_feature_names<I: Into<String>>(mut self, names: Vec<I>) -> DatasetBase<R, S> {
        let feature_names = names.into_iter().map(|x| x.into()).collect();

        self.feature_names = feature_names;

        self
    }
}

impl<L, R: Records, T: AsTargets<Elem = L>> DatasetBase<R, T> {
    /// Map targets with a function `f`
    ///
    /// # Example
    ///
    /// ```
    /// let dataset = linfa_datasets::winequality()
    ///     .map_targets(|x| *x > 6);
    ///
    /// // dataset has now boolean targets
    /// println!("{:?}", dataset.targets());
    /// ```
    ///
    /// # Returns
    ///
    /// A modified dataset with new target type.
    ///
    pub fn map_targets<S, G: FnMut(&L) -> S>(self, fnc: G) -> DatasetBase<R, Array2<S>> {
        let DatasetBase {
            records,
            targets,
            weights,
            feature_names,
            ..
        } = self;

        let targets = targets.as_multi_targets();

        DatasetBase {
            records,
            targets: targets.map(fnc),
            weights,
            feature_names,
        }
    }

    /// Return the number of targets in the dataset
    ///
    /// # Example
    ///
    /// ```
    /// let dataset = linfa_datasets::winequality();
    ///
    /// println!("#targets {}", dataset.ntargets());
    /// ```
    ///
    pub fn ntargets(&self) -> usize {
        self.targets.as_multi_targets().len_of(Axis(1))
    }
}

impl<'a, F, L, D, T> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = L>,
{
    /// Iterate over observations
    ///
    /// This function creates an iterator which produces tuples of data points and target value. The
    /// iterator runs once for each data point and, while doing so, holds an reference to the owned
    /// dataset.
    ///
    /// # Example
    /// ```
    /// let dataset = linfa_datasets::iris();
    ///
    /// for (x, y) in dataset.sample_iter() {
    ///     println!("{} => {}", x, y);
    /// }
    /// ```
    pub fn sample_iter(&'a self) -> Iter<'a, '_, F, T::Elem> {
        Iter::new(self.records.view(), self.targets.as_multi_targets())
    }
}

impl<'a, F: 'a, L: 'a, D, T> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = L> + FromTargetArray<'a, L>,
{
    /// Creates a view of a dataset
    pub fn view(&'a self) -> DatasetBase<ArrayView2<'a, F>, T::View> {
        let records = self.records().view();
        let targets = T::new_targets_view(self.as_multi_targets());

        DatasetBase::new(records, targets)
            .with_feature_names(self.feature_names.clone())
            .with_weights(self.weights.clone())
    }

    /// Iterate over features
    ///
    /// This iterator produces dataset views with only a single feature, while the set of targets remain
    /// complete. It can be useful to compare each feature individual to all targets.
    pub fn feature_iter(&'a self) -> DatasetIter<'a, '_, ArrayBase<D, Ix2>, T> {
        DatasetIter::new(self, true)
    }

    /// Iterate over targets
    ///
    /// This functions creates an iterator which produces dataset views complete records, but only
    /// a single target each. Useful to train multiple single target models for a multi-target
    /// dataset.
    ///
    pub fn target_iter(&'a self) -> DatasetIter<'a, '_, ArrayBase<D, Ix2>, T> {
        DatasetIter::new(self, false)
    }
}

impl<L, R: Records, T: AsTargets<Elem = L>> AsTargets for DatasetBase<R, T> {
    type Elem = L;

    fn as_multi_targets(&self) -> ArrayView2<'_, Self::Elem> {
        self.targets.as_multi_targets()
    }
}

impl<L, R: Records, T: AsTargetsMut<Elem = L>> AsTargetsMut for DatasetBase<R, T> {
    type Elem = L;

    fn as_multi_targets_mut(&mut self) -> ArrayViewMut2<'_, Self::Elem> {
        self.targets.as_multi_targets_mut()
    }
}

#[allow(clippy::type_complexity)]
impl<'a, L: 'a, F, T> DatasetBase<ArrayView2<'a, F>, T>
where
    T: AsTargets<Elem = L> + FromTargetArray<'a, L>,
{
    /// Split dataset into two disjoint chunks
    ///
    /// This function splits the observations in a dataset into two disjoint chunks. The splitting
    /// threshold is calculated with the `ratio`. For example a ratio of `0.9` allocates 90% to the
    /// first chunks and 9% to the second. This is often used in training, validation splitting
    /// procedures.
    pub fn split_with_ratio(
        &'a self,
        ratio: f32,
    ) -> (
        DatasetBase<ArrayView2<'a, F>, T::View>,
        DatasetBase<ArrayView2<'a, F>, T::View>,
    ) {
        let n = (self.nsamples() as f32 * ratio).ceil() as usize;
        let (records_first, records_second) = self.records.view().split_at(Axis(0), n);
        let (targets_first, targets_second) = self.targets.as_multi_targets().split_at(Axis(0), n);

        let targets_first = T::new_targets_view(targets_first);
        let targets_second = T::new_targets_view(targets_second);

        let (first_weights, second_weights) = if self.weights.len() == self.nsamples() {
            let a = self.weights.slice(s![..n]).to_vec();
            let b = self.weights.slice(s![n..]).to_vec();

            (Array1::from(a), Array1::from(b))
        } else {
            (Array1::zeros(0), Array1::zeros(0))
        };
        let dataset1 = DatasetBase::new(records_first, targets_first)
            .with_weights(first_weights)
            .with_feature_names(self.feature_names.clone());

        let dataset2 = DatasetBase::new(records_second, targets_second)
            .with_weights(second_weights)
            .with_feature_names(self.feature_names.clone());

        (dataset1, dataset2)
    }
}

impl<L: Label, T: Labels<Elem = L>, R: Records> Labels for DatasetBase<R, T> {
    type Elem = L;

    fn label_count(&self) -> Vec<HashMap<L, usize>> {
        self.targets().label_count()
    }
}

#[allow(clippy::type_complexity)]
impl<'a, 'b: 'a, F, L: Label, T, D> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = L> + Labels<Elem = L>,
{
    /// Produce N boolean targets from multi-class targets
    ///
    /// Some algorithms (like SVM) don't support multi-class targets. This function splits a
    /// dataset into multiple binary target view of the same dataset.
    pub fn one_vs_all(
        &self,
    ) -> Result<
        Vec<(
            L,
            DatasetBase<ArrayView2<'_, F>, CountedTargets<bool, Array2<bool>>>,
        )>,
    > {
        let targets = self.targets().try_single_target()?;

        Ok(self
            .labels()
            .into_iter()
            .map(|label| {
                let targets = targets
                    .iter()
                    .map(|x| x == &label)
                    .collect::<Array1<_>>()
                    .insert_axis(Axis(1));

                let targets = CountedTargets::new(targets);

                (
                    label,
                    DatasetBase::new(self.records().view(), targets)
                        .with_feature_names(self.feature_names.clone())
                        .with_weights(self.weights.clone()),
                )
            })
            .collect())
    }
}

impl<L: Label, R: Records, S: AsTargets<Elem = L>> DatasetBase<R, S> {
    /// Calculates label frequencies from a dataset while masking certain samples.
    ///
    /// ### Parameters
    ///
    /// * `mask`: a boolean array that specifies which samples to include in the count
    ///
    /// ### Returns
    ///
    /// A mapping of the Dataset's samples to their frequencies
    pub fn label_frequencies_with_mask(&self, mask: &[bool]) -> HashMap<L, f32> {
        let mut freqs = HashMap::new();

        for (elms, val) in self
            .targets
            .as_multi_targets()
            .axis_iter(Axis(0))
            .enumerate()
            .filter(|(i, _)| *mask.get(*i).unwrap_or(&true))
            .map(|(i, x)| (x, self.weight_for(i)))
        {
            for elm in elms {
                if !freqs.contains_key(elm) {
                    freqs.insert(elm.clone(), 0.0);
                }

                *freqs.get_mut(elm).unwrap() += val;
            }
        }

        freqs
    }

    /// Calculates label frequencies from a dataset
    pub fn label_frequencies(&self) -> HashMap<L, f32> {
        self.label_frequencies_with_mask(&[])
    }
}

impl<F, D: Data<Elem = F>, I: Dimension> From<ArrayBase<D, I>>
    for DatasetBase<ArrayBase<D, I>, Array2<()>>
{
    fn from(records: ArrayBase<D, I>) -> Self {
        let empty_targets = Array2::default((records.len_of(Axis(0)), 1));
        DatasetBase {
            records,
            targets: empty_targets,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }
}

impl<F, E, D, S> From<(ArrayBase<D, Ix2>, ArrayBase<S, Ix2>)>
    for DatasetBase<ArrayBase<D, Ix2>, ArrayBase<S, Ix2>>
where
    D: Data<Elem = F>,
    S: Data<Elem = E>,
{
    fn from(rec_tar: (ArrayBase<D, Ix2>, ArrayBase<S, Ix2>)) -> Self {
        DatasetBase {
            records: rec_tar.0,
            targets: rec_tar.1,
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }
}

impl<F, E, D, S> From<(ArrayBase<D, Ix2>, ArrayBase<S, Ix1>)>
    for DatasetBase<ArrayBase<D, Ix2>, ArrayBase<S, Ix2>>
where
    D: Data<Elem = F>,
    S: Data<Elem = E>,
{
    fn from(rec_tar: (ArrayBase<D, Ix2>, ArrayBase<S, Ix1>)) -> Self {
        DatasetBase {
            records: rec_tar.0,
            targets: rec_tar.1.insert_axis(Axis(1)),
            weights: Array1::zeros(0),
            feature_names: Vec::new(),
        }
    }
}

impl<'b, F: Clone, E: Copy + 'b, D, T> DatasetBase<ArrayBase<D, Ix2>, T>
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = E> + FromTargetArray<'b, E>,
    T::Owned: AsTargets,
{
    /// Apply bootstrapping for samples and features
    ///
    /// Bootstrap aggregating is used for sub-sample generation and improves the accuracy and
    /// stability of machine learning algorithms. It samples data uniformly with replacement and
    /// generates datasets where elements may be shared. This selects a subset of observations as
    /// well as features.
    ///
    /// # Parameters
    ///
    ///  * `sample_feature_size`: The number of samples and features per bootstrap
    ///  * `rng`: The random number generator used in the sampling procedure
    ///
    ///  # Returns
    ///
    ///  An infinite Iterator yielding at each step a new bootstrapped dataset
    ///
    pub fn bootstrap<R: Rng>(
        &'b self,
        sample_feature_size: (usize, usize),
        rng: &'b mut R,
    ) -> impl Iterator<Item = DatasetBase<Array2<F>, <T as FromTargetArray<'b, E>>::Owned>> + 'b
    {
        std::iter::repeat(()).map(move |_| {
            // sample with replacement
            let indices = (0..sample_feature_size.0)
                .map(|_| rng.gen_range(0..self.nsamples()))
                .collect::<Vec<_>>();

            let records = self.records().select(Axis(0), &indices);
            let targets = T::new_targets(self.as_multi_targets().select(Axis(0), &indices));

            let indices = (0..sample_feature_size.1)
                .map(|_| rng.gen_range(0..self.nfeatures()))
                .collect::<Vec<_>>();

            let records = records.select(Axis(1), &indices);

            DatasetBase::new(records, targets)
        })
    }

    /// Apply sample bootstrapping
    ///
    /// Bootstrap aggregating is used for sub-sample generation and improves the accuracy and
    /// stability of machine learning algorithms. It samples data uniformly with replacement and
    /// generates datasets where elements may be shared. Only a sample subset is selected which
    /// retains all features and targets.
    ///
    /// # Parameters
    ///
    ///  * `num_samples`: The number of samples per bootstrap
    ///  * `rng`: The random number generator used in the sampling procedure
    ///
    ///  # Returns
    ///
    ///  An infinite Iterator yielding at each step a new bootstrapped dataset
    ///
    pub fn bootstrap_samples<R: Rng>(
        &'b self,
        num_samples: usize,
        rng: &'b mut R,
    ) -> impl Iterator<Item = DatasetBase<Array2<F>, <T as FromTargetArray<'b, E>>::Owned>> + 'b
    {
        std::iter::repeat(()).map(move |_| {
            // sample with replacement
            let indices = (0..num_samples)
                .map(|_| rng.gen_range(0..self.nsamples()))
                .collect::<Vec<_>>();

            let records = self.records().select(Axis(0), &indices);
            let targets = T::new_targets(self.as_multi_targets().select(Axis(0), &indices));

            DatasetBase::new(records, targets)
        })
    }

    /// Apply feature bootstrapping
    ///
    /// Bootstrap aggregating is used for sub-sample generation and improves the accuracy and
    /// stability of machine learning algorithms. It samples data uniformly with replacement and
    /// generates datasets where elements may be shared. Only a feature subset is selected while
    /// retaining all samples and targets.
    ///
    /// # Parameters
    ///
    ///  * `num_features`: The number of features per bootstrap
    ///  * `rng`: The random number generator used in the sampling procedure
    ///
    ///  # Returns
    ///
    ///  An infinite Iterator yielding at each step a new bootstrapped dataset
    ///
    pub fn bootstrap_features<R: Rng>(
        &'b self,
        num_features: usize,
        rng: &'b mut R,
    ) -> impl Iterator<Item = DatasetBase<Array2<F>, <T as FromTargetArray<'b, E>>::Owned>> + 'b
    {
        std::iter::repeat(()).map(move |_| {
            let targets = T::new_targets(self.as_multi_targets().to_owned());

            let indices = (0..num_features)
                .map(|_| rng.gen_range(0..self.nfeatures()))
                .collect::<Vec<_>>();

            let records = self.records.select(Axis(1), &indices);

            DatasetBase::new(records, targets)
        })
    }

    /// Produces a shuffled version of the current Dataset.
    ///
    /// ### Parameters
    ///
    /// * `rng`: the random number generator that will be used to shuffle the samples
    ///
    /// ### Returns
    ///
    /// A new shuffled version of the current Dataset
    pub fn shuffle<R: Rng>(&self, rng: &mut R) -> DatasetBase<Array2<F>, T::Owned> {
        let mut indices = (0..self.nsamples()).collect::<Vec<_>>();
        indices.shuffle(rng);

        let records = self.records().select(Axis(0), &indices);
        let targets = self.as_multi_targets().select(Axis(0), &indices);
        let targets = T::new_targets(targets);

        DatasetBase::new(records, targets)
    }

    #[allow(clippy::type_complexity)]
    /// Performs K-folding on the dataset.
    /// The dataset is divided into `k` "fold", each containing
    /// `(dataset size)/k` samples, used to generate `k` training-validation
    /// dataset pairs. Each pair contains a validation `Dataset` with `k` samples,
    ///  the ones contained in the i-th fold, and a training `Dataset` composed by the
    /// union of all the samples in the remaining folds.
    ///
    /// ### Parameters
    ///
    /// * `k`: the number of folds to apply
    ///
    /// ### Returns
    ///
    /// A vector of `k` training-validation Dataset pairs.
    ///
    /// ### Example
    ///
    /// ```rust
    /// use linfa::dataset::DatasetView;
    /// use ndarray::array;
    ///
    /// let records = array![[1.,1.], [2.,1.], [3.,2.], [4.,1.],[5., 3.], [6.,2.]];
    /// let targets = array![1, 1, 0, 1, 0, 0];
    ///
    /// let dataset : DatasetView<f64, usize> = (records.view(), targets.view()).into();
    /// let accuracies = dataset.fold(3).into_iter().map(|(train, valid)| {
    ///     // Here you can train your model and perform validation
    ///     
    ///     // let model = params.fit(&dataset);
    ///     // let predi = model.predict(&valid);
    ///     // predi.confusion_matrix(&valid).accuracy()  
    /// });
    /// ```
    ///  
    pub fn fold(
        &self,
        k: usize,
    ) -> Vec<(
        DatasetBase<Array2<F>, T::Owned>,
        DatasetBase<Array2<F>, T::Owned>,
    )> {
        let targets = self.as_multi_targets();
        let fold_size = targets.len() / k;
        let mut res = Vec::new();

        // Generates all k folds of records and targets
        let mut records_chunks: Vec<_> =
            self.records.axis_chunks_iter(Axis(0), fold_size).collect();
        let mut targets_chunks: Vec<_> = targets.axis_chunks_iter(Axis(0), fold_size).collect();

        // For each iteration, take the first chunk for both records and targets as the validation set and
        // concatenate all the other chunks to create the training set. In the end swap the first chunk with the
        // one in the next index so that it is ready for the next iteration
        for i in 0..k {
            let remaining_records = concatenate(Axis(0), &records_chunks.as_slice()[1..]).unwrap();
            let remaining_targets = concatenate(Axis(0), &targets_chunks.as_slice()[1..]).unwrap();

            res.push((
                // training
                DatasetBase::new(remaining_records, T::new_targets(remaining_targets)),
                // validation
                DatasetBase::new(
                    records_chunks[0].into_owned(),
                    T::new_targets(targets_chunks[0].into_owned()),
                ),
            ));

            // swap
            if i < k - 1 {
                records_chunks.swap(0, i + 1);
                targets_chunks.swap(0, i + 1);
            }
        }
        res
    }

    pub fn sample_chunks<'a: 'b>(&'b self, chunk_size: usize) -> ChunksIter<'b, 'a, F, T> {
        ChunksIter::new(self.records().view(), &self.targets, chunk_size, Axis(0))
    }

    pub fn to_owned(&self) -> DatasetBase<Array2<F>, T::Owned> {
        DatasetBase::new(
            self.records().to_owned(),
            T::new_targets(self.as_multi_targets().to_owned()),
        )
    }
}

macro_rules! assist_swap_array2 {
    ($slice: expr, $index: expr, $fold_size: expr, $features: expr) => {
        if $index != 0 {
            let adj_fold_size = $fold_size * $features;
            let start = adj_fold_size * $index;
            let (first_s, second_s) = $slice.split_at_mut(start);
            let (mut fold, _) = second_s.split_at_mut(adj_fold_size);
            first_s[..$fold_size * $features].swap_with_slice(&mut fold);
        }
    };
}

impl<'a, F: 'a + Clone, E: Copy + 'a, D, S> DatasetBase<ArrayBase<D, Ix2>, ArrayBase<S, Ix2>>
where
    D: DataMut<Elem = F>,
    S: DataMut<Elem = E>,
{
    /// Allows to perform k-folding cross validation on fittable algorithms.
    ///
    /// Given in input a dataset, a value of k and the desired params for the fittable
    /// algorithm, returns an iterator over the k trained models and the
    /// associated validation set.
    ///
    /// The models are trained according to a closure specified
    /// as an input.
    ///
    /// ## Parameters
    ///
    /// - `k`: the number of folds to apply to the dataset
    /// - `params`: the desired parameters for the fittable algorithm at hand
    /// - `fit_closure`: a closure of the type `(params, training_data) -> fitted_model`
    /// that will be used to produce the trained model for each fold. The training data given in input
    /// won't outlive the closure.
    ///
    /// ## Returns
    ///
    /// An iterator over couples `(trained_model, validation_set)`.
    ///
    /// ## Panics
    ///
    /// This method will panic for any of the following three reasons:
    ///
    /// - The value of `k` provided is not positive;
    /// - The value of `k` provided is greater than the total number of samples in the dataset;
    /// - The dataset's data is not stored contiguously and in standard order;
    ///
    /// ## Example
    /// ```rust
    /// use linfa::traits::Fit;
    /// use linfa::dataset::{Dataset, DatasetView, Records};
    /// use ndarray::{array, ArrayView1, ArrayView2};
    /// use linfa::Error;
    ///
    /// struct MockFittable {}
    ///
    /// struct MockFittableResult {
    ///    mock_var: usize,
    /// }
    ///
    ///
    /// impl<'a> Fit<ArrayView2<'a,f64>, ArrayView2<'a, f64>, linfa::error::Error> for MockFittable {
    ///     type Object = MockFittableResult;
    ///
    ///     fn fit(&self, training_data: &DatasetView<f64, f64>) -> Result<Self::Object, linfa::error::Error> {
    ///         Ok(MockFittableResult {
    ///             mock_var: training_data.nsamples(),
    ///         })
    ///     }
    /// }
    ///
    /// let records = array![[1.,1.], [2.,2.], [3.,3.], [4.,4.], [5.,5.]];
    /// let targets = array![1.,2.,3.,4.,5.];
    /// let mut dataset: Dataset<f64, f64> = (records, targets).into();
    /// let params = MockFittable {};
    ///
    ///for (model,validation_set) in dataset.iter_fold(5, |v| params.fit(&v).unwrap()){
    ///     // Here you can use `model` and `validation_set` to
    ///     // assert the performance of the chosen algorithm
    /// }
    /// ```
    pub fn iter_fold<O, C: Fn(&DatasetView<F, E>) -> O>(
        &'a mut self,
        k: usize,
        fit_closure: C,
    ) -> impl Iterator<Item = (O, DatasetBase<ArrayView2<F>, ArrayView2<E>>)> {
        assert!(k > 0);
        assert!(k <= self.nsamples());
        let samples_count = self.nsamples();
        let fold_size = samples_count / k;

        let features = self.nfeatures();
        let targets = self.ntargets();

        let mut objs: Vec<O> = Vec::new();

        {
            let records_sl = self.records.as_slice_mut().unwrap();
            let mut targets_sl2 = self.targets.as_multi_targets_mut();
            let targets_sl = targets_sl2.as_slice_mut().unwrap();

            for i in 0..k {
                assist_swap_array2!(records_sl, i, fold_size, features);
                assist_swap_array2!(targets_sl, i, fold_size, targets);

                {
                    let train = DatasetBase::new(
                        ArrayView2::from_shape(
                            (samples_count - fold_size, features),
                            records_sl.split_at(fold_size * features).1,
                        )
                        .unwrap(),
                        ArrayView2::from_shape(
                            (samples_count - fold_size, targets),
                            targets_sl.split_at(fold_size * targets).1,
                        )
                        .unwrap(),
                    );

                    let obj = fit_closure(&train);
                    objs.push(obj);
                }

                assist_swap_array2!(records_sl, i, fold_size, features);
                assist_swap_array2!(targets_sl, i, fold_size, targets);
            }
        }

        objs.into_iter().zip(self.sample_chunks(fold_size))
    }

    /// Cross validation for multi-target algorithms
    ///
    /// Given a list of fittable models, cross validation
    /// is used to compare their performance according to some
    /// performance metric. To do so, k-folding is applied to the
    /// dataset and, for each fold, each model is trained on the training set
    /// and its performance is evaluated on the validation set. The performances
    /// collected for each model are then averaged over the number of folds.
    ///
    /// ### Parameters:
    ///
    /// - `k`: the number of folds to apply
    /// - `parameters`: a list of models to compare
    /// - `eval`: closure used to evaluate the performance of each trained model
    ///
    /// ### Returns
    ///
    /// An array of model performances, in the same order as the models in input, if no errors occur.
    /// The performance of each model is given as an array of performances, one for each target.
    /// Otherwise, it might return an Error in one of the following cases:
    ///
    /// - An error occurred during the fitting of one model
    /// - An error occurred inside the evaluation closure
    ///
    /// ### Example
    ///
    /// ```rust, ignore
    ///
    /// use linfa::prelude::*;
    ///
    /// // mutability needed for fast cross validation
    /// let mut dataset = linfa_datasets::diabetes();
    ///
    /// let models = vec![model1, model2, ... ];
    ///
    /// let r2_scores = dataset.cross_validate_multi(5,&models, |prediction, truth| prediction.r2(truth))?;
    ///
    /// ```
    pub fn cross_validate_multi<O, ER, M, FACC, C>(
        &'a mut self,
        k: usize,
        parameters: &[M],
        eval: C,
    ) -> std::result::Result<Array2<FACC>, ER>
    where
        ER: std::error::Error + std::convert::From<crate::error::Error>,
        M: for<'c> Fit<ArrayView2<'c, F>, ArrayView2<'c, E>, ER, Object = O>,
        O: for<'d> PredictInplace<ArrayView2<'a, F>, Array2<E>>,
        FACC: Float,
        C: Fn(&Array2<E>, &ArrayView2<E>) -> std::result::Result<Array1<FACC>, crate::error::Error>,
    {
        let mut evaluations = Array2::from_elem((parameters.len(), self.ntargets()), FACC::zero());
        let folds_evaluations: std::result::Result<Vec<_>, ER> = self
            .iter_fold(k, |train| {
                let fit_result: std::result::Result<Vec<_>, ER> =
                    parameters.iter().map(|p| p.fit(train)).collect();
                fit_result
            })
            .map(|(models, valid)| {
                let targets = valid.targets();
                let models = models?;
                let mut eval_predictions =
                    Array2::from_elem((models.len(), targets.len()), FACC::zero());
                for (i, model) in models.iter().enumerate() {
                    let predicted = model.predict(valid.records());
                    let eval_pred = match eval(&predicted, targets) {
                        Err(e) => Err(ER::from(e)),
                        Ok(res) => Ok(res),
                    }?;
                    eval_predictions.row_mut(i).add_assign(&eval_pred);
                }
                Ok(eval_predictions)
            })
            .collect();

        for fold_evaluation in folds_evaluations? {
            evaluations.add_assign(&fold_evaluation)
        }
        Ok(evaluations / FACC::from(k).unwrap())
    }

    /// Cross validation for single target algorithms
    ///
    /// Given a list of fittable models, cross validation
    /// is used to compare their performance according to some
    /// performance metric. To do so, k-folding is applied to the
    /// dataset and, for each fold, each model is trained on the training set
    /// and its performance is evaluated on the validation set. The performances
    /// collected for each model are then averaged over the number of folds.
    ///
    /// ### Parameters:
    ///
    /// - `k`: the number of folds to apply
    /// - `parameters`: a list of models to compare
    /// - `eval`: closure used to evaluate the performance of each trained model. For single target
    ///    datasets, this closure is called once for each fold.
    ///    For multi-target datasets the closure is called, in each fold, once for every different target.
    ///    If there is the need to use different evaluations for each target, take a look at the
    ///    [`cross_validate_multi`](struct.DatasetBase.html#method.cross_validate_multi) method.
    ///
    /// ### Returns
    ///
    /// On succesful evalutation it returns an array of model performances, in the same order as the models in input.
    ///
    /// It returns an Error in one of the following cases:
    ///
    /// - An error occurred during the fitting of one model
    /// - An error occurred inside the evaluation closure
    ///
    /// ### Example
    ///
    /// ```rust, ignore
    ///
    /// use linfa::prelude::*;
    ///
    /// // mutability needed for fast cross validation
    /// let mut dataset = linfa_datasets::diabetes();
    ///
    /// let models = vec![model1, model2, ... ];
    ///
    /// let r2_scores = dataset.cross_validate(5,&models, |prediction, truth| prediction.r2(truth))?;
    ///
    /// ```
    pub fn cross_validate<O, ER, M, FACC, C, I>(
        &'a mut self,
        k: usize,
        parameters: &[M],
        eval: C,
    ) -> std::result::Result<ArrayBase<OwnedRepr<FACC>, I>, ER>
    where
        ER: std::error::Error + std::convert::From<crate::error::Error>,
        M: for<'c> Fit<ArrayView2<'c, F>, ArrayView2<'c, E>, ER, Object = O>,
        O: for<'d> PredictInplace<ArrayView2<'a, F>, ArrayBase<OwnedRepr<E>, I>>,
        FACC: Float,
        C: Fn(&ArrayView1<E>, &ArrayView1<E>) -> std::result::Result<FACC, crate::error::Error>,
        I: Dimension,
    {
        // construct shape as either vector or matrix
        let mut shape = match I::NDIM {
            Some(1) | Some(2) => Ok(I::zeros(I::NDIM.unwrap())),
            _ => Err(crate::Error::NdShape(ndarray::ShapeError::from_kind(
                ndarray::ErrorKind::IncompatibleShape,
            ))),
        }?;

        // assign shape form of output
        let mut tmp = shape.as_array_view_mut();
        tmp[0] = parameters.len();
        if tmp.len() == 2 {
            tmp[1] = self.ntargets();
        }

        let folds_evaluations = self
            .iter_fold(k, |train| {
                let fit_result: std::result::Result<Vec<_>, ER> =
                    parameters.iter().map(|p| p.fit(train)).collect();
                fit_result
            })
            .map(|(models, valid)| {
                let targets = valid.as_multi_targets();
                let models = models?;

                let eval_predictions = models
                    .iter()
                    .map(|m| {
                        let nsamples = valid.nsamples();
                        let predicted = m.predict(valid.records());

                        // reshape to ensure that matrix has two dimensions
                        let ntargets = if predicted.ndim() == 1 {
                            1
                        } else {
                            predicted.len_of(Axis(1))
                        };

                        let predicted: Array2<_> =
                            predicted.into_shape((nsamples, ntargets)).unwrap();

                        predicted
                            .columns()
                            .into_iter()
                            .zip(targets.columns().into_iter())
                            .map(|(p, t)| eval(&p.view(), &t).map_err(ER::from))
                            .collect()
                    })
                    .collect::<std::result::Result<Vec<Vec<FACC>>, ER>>()?
                    .into_iter()
                    .flatten()
                    .collect();

                Ok(Array::from_shape_vec(shape.clone(), eval_predictions).unwrap())
            })
            .collect::<std::result::Result<Vec<_>, ER>>();

        let res = folds_evaluations?
            .into_iter()
            .fold(Array::<FACC, _>::zeros(shape.clone()), std::ops::Add::add);

        Ok(res / FACC::cast(k))
    }
}

impl<F, E> Dataset<F, E> {
    /// Split dataset into two disjoint chunks
    ///
    /// This function splits the observations in a dataset into two disjoint chunks. The splitting
    /// threshold is calculated with the `ratio`. If the input Dataset contains `n` samples then the
    /// two new Datasets will have respectively `n * ratio` and `n - (n*ratio)` samples.
    /// For example a ratio of `0.9` allocates 90% to the
    /// first chunks and 10% to the second. This is often used in training, validation splitting
    /// procedures.
    ///
    /// ### Parameters
    ///
    /// * `ratio`: the ratio of samples in the input Dataset to include in the first output one
    ///
    /// ### Returns
    ///  
    /// The input Dataset split into two according to the input ratio.
    pub fn split_with_ratio(mut self, ratio: f32) -> (Self, Self) {
        let (nfeatures, ntargets) = (self.nfeatures(), self.ntargets());

        let n1 = (self.nsamples() as f32 * ratio).ceil() as usize;
        let n2 = self.nsamples() - n1;

        let feature_names = self.feature_names();

        // split records into two disjoint arrays
        let mut array_buf = self.records.into_raw_vec();
        let second_array_buf = array_buf.split_off(n1 * nfeatures);

        let first = Array2::from_shape_vec((n1, nfeatures), array_buf).unwrap();
        let second = Array2::from_shape_vec((n2, nfeatures), second_array_buf).unwrap();

        // split targets into two disjoint Vec
        let mut array_buf = self.targets.into_raw_vec();
        let second_array_buf = array_buf.split_off(n1 * ntargets);

        let first_targets = Array2::from_shape_vec((n1, ntargets), array_buf).unwrap();
        let second_targets = Array2::from_shape_vec((n2, ntargets), second_array_buf).unwrap();

        // split weights into two disjoint Vec
        let second_weights = if self.weights.len() == n1 + n2 {
            let mut weights = self.weights.into_raw_vec();

            let weights2 = weights.split_off(n1);
            self.weights = Array1::from(weights);

            Array1::from(weights2)
        } else {
            Array1::zeros(0)
        };

        // create new datasets with attached weights
        let dataset1 = Dataset::new(first, first_targets)
            .with_weights(self.weights)
            .with_feature_names(feature_names.clone());
        let dataset2 = Dataset::new(second, second_targets)
            .with_weights(second_weights)
            .with_feature_names(feature_names);

        (dataset1, dataset2)
    }
}

impl<F, D, E, T, O> Predict<ArrayBase<D, Ix2>, DatasetBase<ArrayBase<D, Ix2>, T>> for O
where
    D: Data<Elem = F>,
    T: AsTargets<Elem = E>,
    O: PredictInplace<ArrayBase<D, Ix2>, T>,
{
    fn predict(&self, records: ArrayBase<D, Ix2>) -> DatasetBase<ArrayBase<D, Ix2>, T> {
        let mut targets = self.default_target(&records);
        self.predict_inplace(&records, &mut targets);
        DatasetBase::new(records, targets)
    }
}

impl<F, R, T, E, S, O> Predict<DatasetBase<R, T>, DatasetBase<R, S>> for O
where
    R: Records<Elem = F>,
    S: AsTargets<Elem = E>,
    O: PredictInplace<R, S>,
{
    fn predict(&self, ds: DatasetBase<R, T>) -> DatasetBase<R, S> {
        let mut targets = self.default_target(&ds.records);
        self.predict_inplace(&ds.records, &mut targets);
        DatasetBase::new(ds.records, targets)
    }
}

impl<'a, F, R, T, S, O> Predict<&'a DatasetBase<R, T>, S> for O
where
    R: Records<Elem = F>,
    O: PredictInplace<R, S>,
{
    fn predict(&self, ds: &'a DatasetBase<R, T>) -> S {
        let mut targets = self.default_target(&ds.records);
        self.predict_inplace(&ds.records, &mut targets);
        targets
    }
}

impl<'a, F, D, DM, T, O> Predict<&'a ArrayBase<D, DM>, T> for O
where
    D: Data<Elem = F>,
    DM: Dimension,
    O: PredictInplace<ArrayBase<D, DM>, T>,
{
    fn predict(&self, records: &'a ArrayBase<D, DM>) -> T {
        let mut targets = self.default_target(records);
        self.predict_inplace(records, &mut targets);
        targets
    }
}

impl<L: Label, S: Labels<Elem = L>> CountedTargets<L, S> {
    pub fn new(targets: S) -> Self {
        let labels = targets.label_count();

        CountedTargets { targets, labels }
    }
}

pub trait IntoTargets<T> {
    fn into(self) -> T;
}

impl<F, D: Data<Elem = F>> IntoTargets<ArrayBase<D, Ix2>> for ArrayBase<D, Ix1> {
    fn into(self) -> ArrayBase<D, Ix2> {
        self.insert_axis(Axis(1))
    }
}

impl<T> IntoTargets<T> for T {
    fn into(self) -> T {
        self
    }
}