1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#![doc = include_str!("../README.md")]

use ndarray::Array2;
use ndarray_rand::rand::Rng;
use ndarray_rand::rand_distr::Normal;

use linfa::{dataset::DatasetBase, traits::Transformer, Float, ParamGuard};

mod error;
mod hyperparams;

pub use error::{Result, TSneError};
pub use hyperparams::{TSneParams, TSneValidParams};

impl<F: Float, R: Rng + Clone> Transformer<Array2<F>, Result<Array2<F>>> for TSneValidParams<F, R> {
    fn transform(&self, mut data: Array2<F>) -> Result<Array2<F>> {
        let (nfeatures, nsamples) = (data.ncols(), data.nrows());

        // validate parameter-data constraints
        if self.embedding_size() > nfeatures {
            return Err(TSneError::EmbeddingSizeTooLarge);
        }

        if F::cast(nsamples - 1) < F::cast(3) * self.perplexity() {
            return Err(TSneError::PerplexityTooLarge);
        }

        // estimate number of preliminary iterations if not given
        let preliminary_iter = match self.preliminary_iter() {
            Some(x) => *x,
            None => usize::min(self.max_iter() / 2, 250),
        };

        let mut data = data.as_slice_mut().unwrap();

        let mut rng = self.rng().clone();
        let normal = Normal::new(0.0, 1e-4 * 10e-4).unwrap();

        let mut embedding: Vec<F> = (0..nsamples * self.embedding_size())
            .map(|_| rng.sample(&normal))
            .map(F::cast)
            .collect();

        bhtsne::run(
            &mut data,
            nsamples,
            nfeatures,
            &mut embedding,
            self.embedding_size(),
            self.perplexity(),
            self.approx_threshold(),
            true,
            self.max_iter() as u64,
            preliminary_iter as u64,
            preliminary_iter as u64,
        );

        Array2::from_shape_vec((nsamples, self.embedding_size()), embedding).map_err(|e| e.into())
    }
}

impl<F: Float, R: Rng + Clone> Transformer<Array2<F>, Result<Array2<F>>> for TSneParams<F, R> {
    fn transform(&self, x: Array2<F>) -> Result<Array2<F>> {
        self.check_ref()?.transform(x)
    }
}

impl<T, F: Float, R: Rng + Clone>
    Transformer<DatasetBase<Array2<F>, T>, Result<DatasetBase<Array2<F>, T>>>
    for TSneValidParams<F, R>
{
    fn transform(&self, ds: DatasetBase<Array2<F>, T>) -> Result<DatasetBase<Array2<F>, T>> {
        let DatasetBase {
            records,
            targets,
            weights,
            ..
        } = ds;

        self.transform(records)
            .map(|new_records| DatasetBase::new(new_records, targets).with_weights(weights))
    }
}

impl<T, F: Float, R: Rng + Clone>
    Transformer<DatasetBase<Array2<F>, T>, Result<DatasetBase<Array2<F>, T>>> for TSneParams<F, R>
{
    fn transform(&self, ds: DatasetBase<Array2<F>, T>) -> Result<DatasetBase<Array2<F>, T>> {
        self.check_ref()?.transform(ds)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_abs_diff_eq;
    use ndarray::{Array, Array1, Axis};
    use ndarray_rand::{rand_distr::Normal, RandomExt};
    use rand::{rngs::SmallRng, SeedableRng};

    use linfa::{dataset::Dataset, metrics::SilhouetteScore};

    #[test]
    fn autotraits() {
        fn has_autotraits<T: Send + Sync + Sized + Unpin>() {}
        has_autotraits::<TSneParams<f64, rand::distributions::Uniform<f64>>>();
        has_autotraits::<TSneValidParams<f64, rand::distributions::Uniform<f64>>>();
        has_autotraits::<TSneError>();
    }

    #[test]
    fn iris_separate() -> Result<()> {
        let ds = linfa_datasets::iris();
        let rng = SmallRng::seed_from_u64(42);

        let ds = TSneParams::embedding_size_with_rng(2, rng)
            .perplexity(10.0)
            .approx_threshold(0.0)
            .transform(ds)?;

        assert!(ds.silhouette_score()? > 0.6);

        Ok(())
    }

    #[test]
    fn blob_separate() -> Result<()> {
        let mut rng = SmallRng::seed_from_u64(42);
        let entries: Array2<f64> = ndarray::concatenate(
            Axis(0),
            &[
                Array::random_using((100, 2), Normal::new(-10., 0.5).unwrap(), &mut rng).view(),
                Array::random_using((100, 2), Normal::new(10., 0.5).unwrap(), &mut rng).view(),
            ],
        )?;

        let targets = (0..200).map(|x| x < 100).collect::<Array1<_>>();
        let dataset = Dataset::new(entries, targets);

        let ds = TSneParams::embedding_size_with_rng(2, rng)
            .perplexity(60.0)
            .approx_threshold(0.0)
            .transform(dataset)?;

        assert_abs_diff_eq!(ds.silhouette_score()?, 0.945, epsilon = 0.01);

        Ok(())
    }

    #[test]
    #[should_panic(expected = "NegativePerplexity")]
    fn perplexity_panic() {
        let ds = linfa_datasets::iris();

        TSneParams::embedding_size(2)
            .perplexity(-10.0)
            .transform(ds)
            .unwrap();
    }

    #[test]
    #[should_panic(expected = "NegativeApproximationThreshold")]
    fn approx_threshold_panic() {
        let ds = linfa_datasets::iris();

        TSneParams::embedding_size(2)
            .approx_threshold(-10.0)
            .transform(ds)
            .unwrap();
    }
    #[test]
    #[should_panic(expected = "EmbeddingSizeTooLarge")]
    fn embedding_size_panic() {
        let ds = linfa_datasets::iris();

        TSneParams::embedding_size(5).transform(ds).unwrap();
    }
}