1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
//! # Support Vector Machines
//!
//! Support Vector Machines are a major branch of machine learning models and offer classification or
//! regression analysis of labeled datasets. They seek a discriminant, which separates the data in
//! an optimal way, e.g. have the fewest numbers of miss-classifications and maximizes the margin
//! between positive and negative classes. A support vector
//! contributes to the discriminant and is therefore important for the classification/regression
//! task. The balance between the number of support vectors and model performance can be controlled
//! with hyperparameters.
//!
//! More details can be found [here](https://en.wikipedia.org/wiki/Support_vector_machine)
//!
//! ## Available parameters in Classification and Regression
//!
//! For supervised classification tasks the C or Nu values are used to control this balance. In
//! [fit_c](SVClassify/fn.fit_c) the
//! C value controls the penalty given to missclassification and should be in the interval (0, inf). In
//! [fit_nu](SVClassify/fn.fit_nu.html) the Nu value controls the number of support vectors and should be in the interval (0, 1].
//!
//! For supervised classification with just one class of data a special classifier is available in
//! [fit_one_class](SVClassify/fn.fit_one_class.html). It also accepts a Nu value.
//!
//! For support vector regression two flavors are available. With
//! [fit_epsilon](SVRegress/fn.fit_epsilon.html) a regression task is learned while minimizing deviation
//! larger than epsilon. In [fit_nu](SVRegress/fn.fit_nu.html) the parameter epsilon is replaced with Nu
//! again and should be in the interval (0, 1]
//!
//! ## Kernel Methods
//! Normally the resulting discriminant is linear, but with [Kernel Methods](https://en.wikipedia.org/wiki/Kernel_method) non-linear relations between the input features
//! can be learned in order improve the performance of the model.
//!  
//! For example to transform a dataset into a sparse RBF kernel with 10 non-zero distances you can
//! use `linfa_kernel`:
//! ```rust, ignore
//! use linfa_kernel::Kernel;
//! let train_kernel = Kernel::params()
//!     .method(KernelMethod::Gaussian(30.0))
//!     .transform(&train);
//! ```
//!
//! # The solver
//! This implementation uses Sequential Minimal Optimization, a widely used optimization tool for
//! convex problems. It selects in each optimization step two variables and updates the variables.
//! In each step it performs:
//!
//! 1. Find a variable, which violates the KKT conditions for the optimization problem
//! 2. Pick a second variables and crate a pair (a1, a2)
//! 3. Optimize the pair (a1, a2)
//!
//! After a couple of iterations the solution may be optimal.
//!
//! # Example
//! The wine quality data consists of 11 features, like "acid", "sugar", "sulfur dioxide", and
//! groups the quality into worst 3 to best 8. These are unified to good 8-7 and bad 3-6 to get a
//! binary classification task.
//!
//! With an RBF kernel and C-Support Vector Classification an
//! accuracy of 88.7% is reached within 79535 iterations and 316 support vectors. You can find the
//! example [here](https://github.com/rust-ml/linfa/blob/master/linfa-svm/examples/winequality.rs).
//! ```ignore
//! Fit SVM classifier with #1440 training points
//! Exited after 79535 iterations with obj = -46317.55802870996 and 316 support vectors
//!
//! classes    | bad        | good
//! bad        | 133        | 9
//! good       | 9          | 8
//!
//! accuracy 0.8867925, MCC 0.40720797
//! ```
use linfa::{composing::PlattParams, Float};
use ndarray::{ArrayBase, Data, Ix1};

use std::fmt;
use std::marker::PhantomData;

#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};

mod classification;
pub mod error;
mod permutable_kernel;
mod regression;
pub mod solver_smo;

use linfa_kernel::{Kernel, KernelMethod, KernelParams};
pub use solver_smo::{SeparatingHyperplane, SolverParams};

use std::ops::Mul;

/// SVM Hyperparameters
///
/// The SVM fitting process can be controlled in different ways. For classification the C and Nu
/// parameters control the ratio of support vectors and accuracy, eps controls the required
/// precision. After setting the desired parameters a model can be fitted by calling `fit`.
///
/// You can specify the expected return type with the turbofish syntax. If you want to enable
/// Platt-Scaling for proper probability values, then use:
/// ```ignore
/// let model = Svm::<_, Pr>::params();
/// ```
/// or `bool` if you only wants to know the binary decision:
/// ```ignore
/// let model = Svm::<_, bool>::params();
/// ```
///
/// ## Example
///
/// ```ignore
/// let model = Svm::params()
///     .eps(0.1f64)
///     .shrinking(true)
///     .nu_weight(0.1)
///     .fit(&dataset);
/// ```
///
pub struct SvmParams<F: Float, T> {
    c: Option<(F, F)>,
    nu: Option<(F, F)>,
    solver_params: SolverParams<F>,
    phantom: PhantomData<T>,
    kernel: KernelParams<F>,
    platt: PlattParams<F, ()>,
}

impl<F: Float, T> SvmParams<F, T> {
    /// Set stopping condition
    ///
    /// This parameter controls the stopping condition. It checks whether the sum of gradients of
    /// the max violating pair is below this threshold and then stops the optimization proces.
    pub fn eps(mut self, new_eps: F) -> Self {
        self.solver_params.eps = new_eps;
        self
    }

    /// Shrink active variable set
    ///
    /// This parameter controls whether the active variable set is shrinked or not. This can speed
    /// up the optimization process, but may degredade the solution performance.
    pub fn shrinking(mut self, shrinking: bool) -> Self {
        self.solver_params.shrinking = shrinking;

        self
    }

    /// Set the kernel to use for training
    ///
    /// This parameter specifies a mapping of input records to a new feature space by means
    /// of the distance function between any couple of points mapped to such new space.
    /// The SVM then applies a linear separation in the new feature space that may result in
    /// a non linear partitioning of the original input space, thus increasing the expressiveness of
    /// this model. To use the "base" SVM model it suffices to choose a `Linear` kernel.
    pub fn with_kernel_params(mut self, kernel: KernelParams<F>) -> Self {
        self.kernel = kernel;

        self
    }

    /// Set the platt params for probability calibration
    pub fn with_platt_params(mut self, platt: PlattParams<F, ()>) -> Self {
        self.platt = platt;

        self
    }

    /// Sets the model to use the Gaussian kernel. For this kernel the
    /// distance between two points is computed as: `d(x, x') = exp(-norm(x - x')/eps)`
    pub fn gaussian_kernel(mut self, eps: F) -> Self {
        self.kernel = Kernel::params().method(KernelMethod::Gaussian(eps));

        self
    }

    /// Sets the model to use the Polynomial kernel. For this kernel the
    /// distance between two points is computed as: `d(x, x') = (<x, x'> + costant)^(degree)`
    pub fn polynomial_kernel(mut self, constant: F, degree: F) -> Self {
        self.kernel = Kernel::params().method(KernelMethod::Polynomial(constant, degree));

        self
    }

    /// Sets the model to use the Linear kernel. For this kernel the
    /// distance between two points is computed as : `d(x, x') = <x, x'>`
    pub fn linear_kernel(mut self) -> Self {
        self.kernel = Kernel::params().method(KernelMethod::Linear);

        self
    }
}

impl<F: Float, T> SvmParams<F, T> {
    /// Set the C value for positive and negative samples.
    pub fn pos_neg_weights(mut self, c_pos: F, c_neg: F) -> Self {
        self.c = Some((c_pos, c_neg));
        self.nu = None;

        self
    }

    /// Set the Nu value for classification
    ///
    /// The Nu value should lie in range [0, 1] and sets the relation between support vectors and
    /// solution performance.
    pub fn nu_weight(mut self, nu: F) -> Self {
        self.nu = Some((nu, nu));
        self.c = None;

        self
    }
}

impl<F: Float> SvmParams<F, F> {
    /// Set the C value for regression
    pub fn c_eps(mut self, c: F, eps: F) -> Self {
        self.c = Some((c, eps));
        self.nu = None;

        self
    }

    /// Set the Nu-Eps value for regression
    pub fn nu_eps(mut self, nu: F, eps: F) -> Self {
        self.nu = Some((nu, eps));
        self.c = None;

        self
    }
}

/// Reason for stopping
///
/// SMO can either exit because a threshold is reached or the iterations are maxed out. To
/// differentiate between both this flag is passed with the solution.
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Debug)]
pub enum ExitReason {
    ReachedThreshold,
    ReachedIterations,
}

/// Fitted Support Vector Machines model
///
/// This is the result of the SMO optimizer and contains the support vectors, quality of solution
/// and optionally the linear hyperplane.
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]

pub struct Svm<F: Float, T> {
    pub alpha: Vec<F>,
    pub rho: F,
    r: Option<F>,
    exit_reason: ExitReason,
    iterations: usize,
    obj: F,
    #[cfg_attr(
        feature = "serde",
        serde(bound(
            serialize = "&'a Kernel<'a, F>: Serialize",
            deserialize = "&'a Kernel<'a, F>: Deserialize<'de>"
        ))
    )]
    // the only thing I need the kernel for after the training is to
    // compute the distances, but for that I only need the kernel method
    // and not the whole inner matrix
    kernel_method: KernelMethod<F>,
    sep_hyperplane: SeparatingHyperplane<F>,
    probability_coeffs: Option<(F, F)>,
    phantom: PhantomData<T>,
}

impl<F: Float, T> Svm<F, T> {
    /// Create hyper parameter set
    ///
    /// This creates a `SvmParams` and sets it to the default values:
    ///  * C values of (1, 1)
    ///  * Eps of 1e-7
    ///  * No shrinking
    ///  * Linear kernel
    pub fn params() -> SvmParams<F, T> {
        SvmParams {
            c: Some((F::one(), F::one())),
            nu: None,
            solver_params: SolverParams {
                eps: F::cast(1e-7),
                shrinking: false,
            },
            phantom: PhantomData,
            kernel: Kernel::params().method(KernelMethod::Linear),
            platt: PlattParams::default(),
        }
    }

    /// Returns the number of support vectors
    ///
    /// This function returns the number of support vectors which have an influence on the decision
    /// outcome greater than zero.
    pub fn nsupport(&self) -> usize {
        self.alpha
            .iter()
            // around 1e-5 for f32 and 2e-14 for f64
            .filter(|x| x.abs() > F::cast(100.) * F::epsilon())
            .count()
    }
    pub(crate) fn with_phantom<S>(self) -> Svm<F, S> {
        Svm {
            alpha: self.alpha,
            rho: self.rho,
            r: self.r,
            exit_reason: self.exit_reason,
            obj: self.obj,
            iterations: self.iterations,
            sep_hyperplane: self.sep_hyperplane,
            kernel_method: self.kernel_method,
            probability_coeffs: self.probability_coeffs,
            phantom: PhantomData,
        }
    }

    /// Sums the inner product of `sample` and every one of the support vectors.
    ///
    /// ## Parameters
    ///
    /// * `sample`: the input sample
    ///
    /// ## Returns
    ///
    /// The sum of all inner products of `sample` and every one of the support vectors, scaled by their weight.
    ///
    /// ## Panics
    ///
    /// If the shape of `sample` is not compatible with the
    /// shape of the support vectors
    pub fn weighted_sum<D: Data<Elem = F>>(&self, sample: &ArrayBase<D, Ix1>) -> F {
        match self.sep_hyperplane {
            SeparatingHyperplane::Linear(ref x) => x.mul(sample).sum(),
            SeparatingHyperplane::WeightedCombination(ref supp_vecs) => supp_vecs
                .outer_iter()
                .zip(
                    self.alpha
                        .iter()
                        .filter(|a| a.abs() > F::cast(100.) * F::epsilon()),
                )
                .map(|(x, a)| self.kernel_method.distance(x, sample.view()) * *a)
                .sum(),
        }
    }
}

/// Display solution
///
/// In order to understand the solution of the SMO solver the objective, number of iterations and
/// required support vectors are printed here.
impl<'a, F: Float, T> fmt::Display for Svm<F, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.exit_reason {
            ExitReason::ReachedThreshold => write!(
                f,
                "Exited after {} iterations with obj = {} and {} support vectors",
                self.iterations,
                self.obj,
                self.nsupport()
            ),
            ExitReason::ReachedIterations => write!(
                f,
                "Reached maximal iterations {} with obj = {} and {} support vectors",
                self.iterations,
                self.obj,
                self.nsupport()
            ),
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::Svm;
    use linfa::prelude::*;

    #[test]
    fn test_iter_folding_for_classification() {
        let mut dataset = linfa_datasets::winequality().map_targets(|x| *x > 6);
        let params = Svm::<_, bool>::params()
            .pos_neg_weights(7., 0.6)
            .gaussian_kernel(80.0);

        let avg_acc = dataset
            .iter_fold(4, |training_set| params.fit(&training_set).unwrap())
            .map(|(model, valid)| {
                model
                    .predict(valid.view())
                    .confusion_matrix(&valid)
                    .unwrap()
                    .accuracy()
            })
            .sum::<f32>()
            / 4_f32;
        assert!(avg_acc >= 0.5)
    }

    /*#[test]
    fn test_iter_folding_for_regression() {
        let mut dataset: Dataset<f64, f64> = linfa_datasets::diabetes();
        let params = Svm::params().linear_kernel().c_eps(100., 1.);

        let _avg_r2 = dataset
            .iter_fold(4, |training_set| params.fit(&training_set).unwrap())
            .map(|(model, valid)| Array1::from(model.predict(valid.view())).r2(valid.targets()))
            .sum::<f64>()
            / 4_f64;
    }*/
}