1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! Diffusion Map
//!
//! The diffusion map computes an embedding of the data by applying PCA on the diffusion operator
//! of the data. It transforms the data along the direction of the largest diffusion flow and is therefore
//! a non-linear dimensionality reduction technique. A normalized kernel describes the high dimensional
//! diffusion graph with the (i, j) entry the probability that a diffusion happens from point i to
//! j.
//!
#[cfg(not(feature = "blas"))]
use linfa_linalg::{
    eigh::*,
    lobpcg::{self, LobpcgResult, Order as TruncatedOrder},
};
use ndarray::{Array1, Array2};
#[cfg(feature = "blas")]
use ndarray_linalg::{eigh::EighInto, lobpcg, lobpcg::LobpcgResult, Scalar, TruncatedOrder, UPLO};
use ndarray_rand::{rand_distr::Uniform, RandomExt};

use linfa::dataset::{WithLapack, WithoutLapack};
use linfa::{traits::Transformer, Float};
use linfa_kernel::Kernel;
use rand::{prelude::SmallRng, SeedableRng};

use super::hyperparams::DiffusionMapValidParams;

/// Embedding of diffusion map technique
///
/// After transforming the dataset with diffusion map this structure store the embedding for
/// further use. No straightforward prediction can be made from the embedding and the algorithm
/// falls therefore in the class of transformers.
///
/// The diffusion map computes an embedding of the data by applying PCA on the diffusion operator
/// of the data. It transforms the data along the direction of the largest diffusion flow and is therefore
/// a non-linear dimensionality reduction technique. A normalized kernel describes the high dimensional
/// diffusion graph with the (i, j) entry the probability that a diffusion happens from point i to
/// j.
///
/// # Example
///
/// ```
/// use linfa::traits::Transformer;
/// use linfa_kernel::{Kernel, KernelType, KernelMethod};
/// use linfa_reduction::DiffusionMap;
///
/// let dataset = linfa_datasets::iris();
///
/// // generate sparse gaussian kernel with eps = 2 and 15 neighbors
/// let kernel = Kernel::params()
///     .kind(KernelType::Sparse(15))
///     .method(KernelMethod::Gaussian(2.0))
///     .transform(dataset.records());
///
/// // create embedding from kernel matrix using diffusion maps
/// let mapped_kernel = DiffusionMap::<f64>::params(2)
///     .steps(1)
///     .transform(&kernel)
///     .unwrap();
///
/// // get embedding from the transformed kernel matrix
/// let embedding = mapped_kernel.embedding();
/// ```
///
#[derive(Debug, Clone, PartialEq)]
pub struct DiffusionMap<F> {
    embedding: Array2<F>,
    eigvals: Array1<F>,
}

impl<'a, F: Float> Transformer<&'a Kernel<F>, DiffusionMap<F>> for DiffusionMapValidParams {
    /// Project a kernel matrix to its embedding
    ///
    /// # Parameter
    ///
    /// * `kernel`: Kernel matrix
    ///
    /// # Returns
    ///
    /// Embedding for each observation in the kernel matrix
    fn transform(&self, kernel: &'a Kernel<F>) -> DiffusionMap<F> {
        // compute spectral embedding with diffusion map
        let (embedding, eigvals) =
            compute_diffusion_map(kernel, self.steps(), 0.0, self.embedding_size(), None);

        DiffusionMap { embedding, eigvals }
    }
}

impl<F: Float> DiffusionMap<F> {
    /// Estimate the number of clusters in this embedding (very crude for now)
    pub fn estimate_clusters(&self) -> usize {
        let mean = self.eigvals.sum() / F::cast(self.eigvals.len());
        self.eigvals.iter().filter(|x| *x > &mean).count() + 1
    }

    /// Return the eigenvalue of the diffusion operator
    pub fn eigvals(&self) -> &Array1<F> {
        &self.eigvals
    }

    /// Return the embedding
    pub fn embedding(&self) -> &Array2<F> {
        &self.embedding
    }
}

#[allow(unused)]
fn compute_diffusion_map<F: Float>(
    kernel: &Kernel<F>,
    steps: usize,
    alpha: f32,
    embedding_size: usize,
    guess: Option<Array2<F>>,
) -> (Array2<F>, Array1<F>) {
    assert!(embedding_size < kernel.size());

    let d = kernel.sum().mapv(|x| x.recip());

    let (vals, vecs) = if kernel.size() < 5 * embedding_size + 1 {
        // use full eigenvalue decomposition for small problem sizes
        let mut matrix = kernel.dot(&Array2::from_diag(&d).view());
        matrix
            .columns_mut()
            .into_iter()
            .zip(d.iter())
            .for_each(|(mut a, b)| a *= *b);

        let matrix = matrix.with_lapack();
        // Calculate the eigen decomposition sorted from largest to lowest
        #[cfg(feature = "blas")]
        let (vals, vecs) = {
            let (vals, vecs) = matrix.eigh_into(UPLO::Lower).unwrap();
            (
                vals.slice_move(s![..; -1]).mapv(Scalar::from_real),
                vecs.slice_move(s![.., ..; -1]),
            )
        };
        #[cfg(not(feature = "blas"))]
        let (vals, vecs) = matrix.eigh_into().unwrap().sort_eig_desc();
        (
            vals.slice_move(s![1..=embedding_size]),
            vecs.slice_move(s![.., 1..=embedding_size]),
        )
    } else {
        let d2 = d.mapv(|x| x.powf(F::cast(0.5 + alpha)));
        // calculate truncated eigenvalue decomposition
        let x = guess
            .unwrap_or_else(|| {
                Array2::random_using(
                    (kernel.size(), embedding_size + 1),
                    Uniform::new(0.0f64, 1.0),
                    &mut SmallRng::seed_from_u64(31),
                )
                .mapv(F::cast)
            })
            .with_lapack();

        let result = lobpcg::lobpcg(
            |y| {
                let mut y = y.to_owned().without_lapack();
                y.rows_mut()
                    .into_iter()
                    .zip(d2.iter())
                    .for_each(|(mut a, b)| a *= *b);
                let mut y = kernel.dot(&y.view());

                y.rows_mut()
                    .into_iter()
                    .zip(d2.iter())
                    .for_each(|(mut a, b)| a *= *b);

                y.with_lapack()
            },
            x,
            |_| {},
            None,
            1e-7,
            200,
            TruncatedOrder::Largest,
        );

        let (vals, vecs) = match result {
            #[cfg(feature = "blas")]
            LobpcgResult::Ok(vals, vecs, _) | LobpcgResult::Err(vals, vecs, _, _) => (vals, vecs),
            #[cfg(not(feature = "blas"))]
            LobpcgResult::Ok(lobpcg) | LobpcgResult::Err((_, Some(lobpcg))) => {
                (lobpcg.eigvals, lobpcg.eigvecs)
            }
            _ => panic!("Eigendecomposition failed!"),
        };

        // cut away first eigenvalue/eigenvector
        (vals.slice_move(s![1..]), vecs.slice_move(s![.., 1..]))
    };

    let (vals, mut vecs): (Array1<F>, _) = (vals.without_lapack(), vecs.without_lapack());
    let d = d.mapv(|x| x.sqrt());

    for (mut col, val) in vecs.rows_mut().into_iter().zip(d.iter()) {
        col *= *val;
    }

    let steps = F::cast(steps);
    for (mut vec, val) in vecs.columns_mut().into_iter().zip(vals.iter()) {
        vec *= val.powf(steps);
    }

    (vecs, vals)
}