1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//! # Partial Least Squares
//!
//! `linfa-pls` provides an implementation of methods in the PLS (Partial Least Squares) family.
//! The PLS method is a statistical method that finds a linear relationship between
//! input variables and output variables by projecting them onto a new subspace formed
//! by newly chosen variables (aka latent variables), which are linear
//! combinations of the input variables. The subspace is choosen to maximize the
//! covariance between responses and independant variables.
//!
//! This approach is particularly useful when the original data are characterized by
//! a large number of highly collinear variables measured on a small number of samples.
//!
//! The implementation is a port of the scikit-learn 0.24 cross-decomposition module.
//!
//! ## References
//!
//! * [A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case JA Wegelin](https://stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf)
//! * [Scikit-Learn User Guide](https://scikit-learn.org/stable/modules/cross_decomposition.html#cross-decomposition)
//!
//! ## Example
//!
//! ```rust, ignore
//! use linfa::prelude::*;
//! use linfa_pls::{errors::Result, PlsRegression};
//! use ndarray::array;
//!
//! // Load linnerud datase 20 samples, 3 input features, 3 output features
//! let ds = linnerud();
//!
//! // Fit PLS2 method using 2 principal components (latent variables)
//! let pls = PlsRegression::params(2).fit(&ds)?;
//!
//! // We can either apply the dimension reduction to a dataset
//! let reduced_ds = pls.transform(ds);
//!
//! // ... or predict outputs given a new input sample.
//! let exercices = array![[14., 146., 61.], [6., 80., 60.]];
//! let physio_measures = pls.predict(exercices);
//! ```
mod errors;
mod pls_generic;
mod pls_svd;
mod utils;

use crate::pls_generic::*;

use linfa::{traits::Fit, traits::PredictRef, traits::Transformer, DatasetBase};
use ndarray::{Array2, ArrayBase, Data, Ix2};
use ndarray_linalg::{Lapack, Scalar};

pub use errors::*;
pub use pls_svd::*;

/// Add Scalar and Lapack trait bounds to the common Float trait
pub trait Float: linfa::Float + Scalar + Lapack {}

impl Float for f32 {}
impl Float for f64 {}

macro_rules! pls_algo { ($name:ident) => {
    paste::item! {

        pub struct [<Pls $name Params>]<F: Float>(PlsParams<F>);

        impl<F: Float> [<Pls $name Params>]<F> {
            /// Set the maximum number of iterations of the power method when algorithm='Nipals'. Ignored otherwise.
            pub fn max_iterations(mut self, max_iter: usize) -> Self {
                self.0.max_iter = max_iter;
                self
            }

            /// Set the tolerance used as convergence criteria in the power method: the algorithm
            /// stops whenever the squared norm of u_i - u_{i-1} is less than tol, where u corresponds
            /// to the left singular vector.
            pub fn tolerance(mut self, tolerance: F) -> Self {
                self.0.tolerance = tolerance;
                self
            }

            /// Set whether to scale the dataset
            pub fn scale(mut self, scale: bool) -> Self {
                self.0.scale = scale;
                self
            }

            /// Set the algorithm used to estimate the first singular vectors of the cross-covariance matrix.
            /// `Nipals` uses the power method while `Svd` will compute the whole SVD.
            pub fn algorithm(mut self, algorithm: Algorithm) -> Self {
                self.0.algorithm = algorithm;
                self
            }
        }

        pub struct [<Pls $name>]<F: Float>(Pls<F>);
        impl<F: Float> [<Pls $name>]<F> {

            pub fn params(n_components: usize) -> [<Pls $name Params>]<F> {
                [<Pls $name Params>](Pls::[<$name:lower>](n_components))
            }

            /// Singular vectors of the cross-covariance matrices
            pub fn weights(&self) -> (&Array2<F>, &Array2<F>) {
                self.0.weights()
            }

            /// Loadings of records and targets
            pub fn loadings(&self) -> (&Array2<F>, &Array2<F>) {
                self.0.loadings()
            }

            /// Projection matrices used to transform records and targets
            pub fn rotations(&self) -> (&Array2<F>, &Array2<F>) {
                self.0.rotations()
            }

            /// The coefficients of the linear model such that Y is approximated as Y = X.coefficients
            pub fn coefficients(&self) -> &Array2<F> {
                self.0.coefficients()
            }

            /// Transform the given dataset in the projected space back to the original space.
            pub fn inverse_transform(
                &self,
                dataset: DatasetBase<
                    ArrayBase<impl Data<Elem = F>, Ix2>,
                    ArrayBase<impl Data<Elem = F>, Ix2>,
                >,
            ) -> DatasetBase<Array2<F>, Array2<F>> {
                self.0.inverse_transform(dataset)
            }
        }

        impl<F: Float, D: Data<Elem = F>> Fit<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>, PlsError>
            for [<Pls $name Params>]<F>
        {
            type Object = [<Pls $name>]<F>;
            fn fit(
                &self,
                dataset: &DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
            ) -> Result<Self::Object> {
                let pls = self.0.fit(dataset)?;
                Ok([<Pls $name>](pls))
            }
        }

        impl<F: Float, D: Data<Elem = F>> Transformer<
            DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
            DatasetBase<Array2<F>, Array2<F>>,
        > for [<Pls $name>]<F>
        {
            /// Apply dimension reduction to the given dataset
            fn transform(
                &self,
                dataset: DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
            ) -> DatasetBase<Array2<F>, Array2<F>> {
                self.0.transform(dataset)
            }
        }

        impl<F: Float, D: Data<Elem = F>> PredictRef<ArrayBase<D, Ix2>, Array2<F>> for [<Pls $name>]<F> {
            /// Given an input matrix `X`, with shape `(n_samples, n_features)`,
            /// `predict` returns the target variable according to [<Pls $name>] method
            /// learned from the training data distribution.
            fn predict_ref<'a>(&'a self, x: &ArrayBase<D, Ix2>) -> Array2<F> {
                self.0.predict_ref(x)
            }
        }
    }
}}

pls_algo!(Regression);
pls_algo!(Canonical);
pls_algo!(Cca);

#[cfg(test)]
mod test {
    use super::*;
    use approx::assert_abs_diff_eq;
    use linfa::{traits::Fit, traits::Predict, traits::Transformer};
    use linfa_datasets::linnerud;
    use ndarray::array;

    macro_rules! test_pls_algo {
        (Svd) => {
            paste::item! {
                #[test]
                fn [<test_pls_svd>]() -> Result<()> {
                    let ds = linnerud();
                    let pls = PlsSvd::<f64>::params(3).fit(&ds)?;
                    let _ds1 = pls.transform(ds);
                    Ok(())
                }
            }
        };

        ($name:ident, $expected:expr) => {
            paste::item! {
                #[test]
                fn [<test_pls_$name:lower>]() -> Result<()> {
                    let ds = linnerud();
                    let pls = [<Pls $name>]::<f64>::params(2).fit(&ds)?;
                    let _ds1 = pls.transform(ds);
                    let exercices = array![[14., 146., 61.], [6., 80., 60.]];
                    let physios = pls.predict(exercices);
                    assert_abs_diff_eq!($expected, physios.targets(), epsilon=1e-2);
                    Ok(())
                }
            }
        };
    }

    // Prediction values were checked against scikit-learn 0.24.1
    test_pls_algo!(
        Canonical,
        array![
            [180.56979423, 33.29543984, 56.90850758],
            [190.854022, 38.91963398, 53.26914489]
        ]
    );
    test_pls_algo!(
        Regression,
        array![
            [172.39580643, 34.11919145, 57.15430526],
            [192.11167813, 38.05058858, 53.99844922]
        ]
    );
    test_pls_algo!(
        Cca,
        array![
            [181.56238421, 34.42502589, 57.31447865],
            [205.11767414, 40.23445194, 52.26494323]
        ]
    );
    test_pls_algo!(Svd);

    #[test]
    fn test_one_component_equivalence() -> Result<()> {
        // PlsRegression, PlsSvd and PLSCanonical should all be equivalent when n_components is 1
        let ds = linnerud();
        let regression = PlsRegression::params(1).fit(&ds)?.transform(linnerud());
        let canonical = PlsCanonical::params(1).fit(&ds)?.transform(linnerud());
        let svd = PlsSvd::<f64>::params(1).fit(&ds)?.transform(linnerud());

        assert_abs_diff_eq!(regression.records(), canonical.records(), epsilon = 1e-5);
        assert_abs_diff_eq!(svd.records(), canonical.records(), epsilon = 1e-5);
        Ok(())
    }
}