1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
use {Voxel, FloatNum, SignedNum};
use steps::Steps;

#[inline]
fn compare<T: SignedNum>(a: T, b: T) -> T {
    if a > b { T::one() } else if a == b { T::zero() } else { -T::one() }
}

#[inline]
fn round<I: FloatNum, O: SignedNum>(voxel: Voxel<I>) -> Voxel<O> {
    (O::cast(voxel.0.round()), O::cast(voxel.1.round()), O::cast(voxel.2.round()))
}

/// Walk between two voxels, taking orthogonal steps and visiting all voxels in between.
///
/// Implemented from [this Stack Overflow answer].
/// This algorithm takes floating-point numbers as input and should be symmetrical.
///
/// Example:
///
/// ```
/// extern crate line_drawing;
/// use line_drawing::WalkVoxels; 
///
/// fn main() {
///     for (i, (x, y, z)) in WalkVoxels::<f32, i8>::new((0.0, 0.0, 0.0), (5.0, 6.0, 7.0)).enumerate() {
///         if i > 0 && i % 5 == 0 {
///             println!();
///         }
///         print!("({}, {}, {}), ", x, y, z);
///     }
/// }
/// ```
///
/// ```text
/// (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1), (1, 1, 2),
/// (1, 2, 2), (2, 2, 2), (2, 2, 3), (2, 3, 3), (2, 3, 4),
/// (3, 3, 4), (3, 4, 4), (3, 4, 5), (4, 4, 5), (4, 5, 5),
/// (4, 5, 6), (4, 5, 7), (4, 6, 7), (5, 6, 7), 
/// ```
///
/// [this Stack Overflow answer]: https://stackoverflow.com/a/16507714
pub struct WalkVoxels<I, O> {
    voxel: Voxel<O>,
    count: O,
    sign_x: O,
    sign_y: O,
    sign_z: O,
    err_x: I,
    err_y: I,
    err_z: I,
    d_err_x: I,
    d_err_y: I,
    d_err_z: I
}

impl<I: FloatNum, O: SignedNum> WalkVoxels<I, O> {
    #[inline]
    pub fn new(start: Voxel<I>, end: Voxel<I>) -> Self {
        let start_i: Voxel<O> = round(start);
        let end_i: Voxel<O> = round(end);

        let count = (start_i.0 - end_i.0).abs() +
                    (start_i.1 - end_i.1).abs() +
                    (start_i.2 - end_i.2).abs();

        let sign_x = compare(end_i.0, start_i.0);
        let sign_y = compare(end_i.1, start_i.1);
        let sign_z = compare(end_i.2, start_i.2);

        // Planes for each axis that we will next cross
        let x_plane = start_i.0 + (if end_i.0 > start_i.0 {O::one()} else {O::zero()});
        let y_plane = start_i.1 + (if end_i.1 > start_i.1 {O::one()} else {O::zero()});
        let z_plane = start_i.2 + (if end_i.2 > start_i.2 {O::one()} else {O::zero()});

        // Only used for multiplying up the error margins
        let vx = if start.0 == end.0 {I::one()} else {end.0 - start.0};
        let vy = if start.1 == end.1 {I::one()} else {end.1 - start.1};
        let vz = if start.2 == end.2 {I::one()} else {end.2 - start.2};

        // Error is normalized to vx * vy * vz so we only have to multiply up
        let vxvy = vx * vy;
        let vxvz = vx * vz;
        let vyvz = vy * vz;

        Self {
            sign_x, sign_y, sign_z, count,
            voxel: start_i,
            // Error from the next plane accumulators, scaled up by vx * vy * vz
            // gx0 + vx * rx === gxp
            // vx * rx === gxp - gx0
            // rx === (gxp - gx0) / vx
            err_x: (I::cast(x_plane) - start.0) * vyvz,
            err_y: (I::cast(y_plane) - start.1) * vxvz,
            err_z: (I::cast(z_plane) - start.2) * vxvy,
            d_err_x: I::cast(sign_x) * vyvz,
            d_err_y: I::cast(sign_y) * vxvz,
            d_err_z: I::cast(sign_z) * vxvy
        }
    }

    #[inline]
    pub fn steps(self) -> Steps<Voxel<O>, Self> {
        Steps::new(self)
    }
}

impl<I: FloatNum, O: SignedNum> Iterator for WalkVoxels<I, O> {
    type Item = Voxel<O>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.count >= O::zero() {
            self.count -= O::one();
            
            // Which plane do we cross first?
            let xr = self.err_x.abs();
            let yr = self.err_y.abs();
            let zr = self.err_z.abs();

            let x_zero = self.sign_x == O::zero();
            let y_zero = self.sign_y == O::zero();
            let z_zero = self.sign_z == O::zero();

            let voxel = self.voxel;

            if !x_zero && (y_zero || xr < yr) && (z_zero || xr < zr) {
                self.voxel.0 += self.sign_x;
                self.err_x += self.d_err_x;
            }
            else if !y_zero && (z_zero || yr < zr) {
                self.voxel.1 += self.sign_y;
                self.err_y += self.d_err_y;
            }
            else if !z_zero {
                self.voxel.2 += self.sign_z;
                self.err_z += self.d_err_z;
            }

            Some(voxel)
        } else {
            None
        }
    }
}

#[test]
fn tests() {
    assert_eq!(
        WalkVoxels::new(
            (0.472, -1.100, 0.179),
            (1.114, -0.391, 0.927)
        ).collect::<Vec<_>>(),
        [(0, -1, 0), (1, -1, 0), (1, -1, 1), (1, 0, 1)]
    );
}