1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! Implementation of [Compact Hilbert Indices](https://dl.acm.org/doi/10.1109/CISIS.2007.16) by
//! Chris Hamilton, and (in the near future) of Compact Z-indices by the crate maintainer.

/// Right rotation of x by b bits out of n.
fn rotate_right(x: usize, b: u32, n: u32) -> usize {
    let l = x & ((1 << b) - 1);
    let r = x >> b;
    (l << (n - b)) | r
}

/// Left rotation of x by b bits out of n.
fn rotate_left(x: usize, b: u32, n: u32) -> usize {
    rotate_right(x, n - b, n)
}

/// Binary reflected Gray code.
fn gray_code(i: usize) -> usize {
    i ^ (i >> 1)
}

/// e(i), the entry point for the ith sub-hypercube.
fn entry_point(i: usize) -> usize {
    if i == 0 {
        0
    } else {
        gray_code((i - 1) & !1)
    }
}

/// g(i), the inter sub-hypercube direction.
fn inter_direction(i: usize) -> u32 {
    // g(i) counts the trailing set bits in i
    (!i).trailing_zeros()
}

/// d(i), the intra sub-hypercube direction.
fn intra_direction(i: usize) -> u32 {
    if i & 1 != 0 {
        inter_direction(i)
    } else if i > 0 {
        inter_direction(i - 1)
    } else {
        0
    }
}

/// T transformation inverse
fn t_inverse(dims: u32, e: usize, d: u32, a: usize) -> usize {
    rotate_left(a, d, dims) ^ e
}

/// GrayCodeRankInverse
fn gray_code_rank_inverse(
    dims: u32,
    mu: usize,
    pi: usize,
    r: usize,
    free_bits: u32,
) -> (usize, usize) {
    // The inverse rank of r
    let mut i = 0;
    // gray_code(i)
    let mut g = 0;

    let mut j = free_bits - 1;
    for k in (0..dims).rev() {
        if mu & (1 << k) == 0 {
            g |= pi & (1 << k);
            i |= (g ^ (i >> 1)) & (1 << k);
        } else {
            i |= ((r >> j) & 1) << k;
            g |= (i ^ (i >> 1)) & (1 << k);
            j = j.wrapping_sub(1);
        }
    }

    (i, g)
}

/// ExtractMask.
fn extract_mask(bits: &[u32], i: u32) -> (usize, u32) {
    // The mask
    let mut mu = 0;
    // popcount(mu)
    let mut free_bits = 0;

    let dims = bits.len();
    for j in (0..dims).rev() {
        mu <<= 1;
        if bits[j] > i {
            mu |= 1;
            free_bits += 1;
        }
    }

    (mu, free_bits)
}

/// Compute the corresponding point for a Hilbert index (CompactHilbertIndexInverse).
pub fn from_compact_hilbert_index(index: usize, bits: &[u32], point: &mut [usize]) {
    let dims = bits.len() as u32;
    let max = *bits.iter().max().unwrap();
    let sum: u32 = bits.iter().sum();

    let mut e = 0;
    let mut k = 0;

    // Next direction; we use d instead of d + 1 everywhere
    let mut d = 1;

    for x in point.iter_mut() {
        *x = 0;
    }

    for i in (0..max).rev() {
        let (mut mu, free_bits) = extract_mask(bits, i);
        mu = rotate_right(mu, d, dims);

        let pi = rotate_right(e, d, dims) & !mu;

        let r = (index >> (sum - k - free_bits)) & ((1 << free_bits) - 1);

        k += free_bits;

        let (w, mut l) = gray_code_rank_inverse(dims, mu, pi, r, free_bits);
        l = t_inverse(dims, e, d, l);

        for x in point.iter_mut() {
            *x |= (l & 1) << i;
            l >>= 1;
        }

        e ^= rotate_right(entry_point(w), d, dims);
        d = (d + intra_direction(w) + 1) % dims;
    }
}

/// T transformation
fn t(dims: u32, e: usize, d: u32, b: usize) -> usize {
    rotate_right(b ^ e, d, dims)
}

/// GrayCodeInverse
fn gray_code_inverse(mut g: usize) -> usize {
    let mut i = 0;

    while g != 0 {
        i ^= g;
        g >>= 1;
    }

    i
}

/// GrayCodeRank
fn gray_code_rank(dims: u32, mu: usize, i: usize) -> usize {
    let mut r = 0;

    for k in (0..dims).rev() {
        if mu & (1 << k) != 0 {
            r <<= 1;
            r |= (i >> k) & 1;
        }
    }

    r
}

/// CompactHilbertIndex
pub fn compact_hilbert_index(bits: &[u32], point: &[usize]) -> usize {
    let dims = bits.len() as u32;
    let max = *bits.iter().max().unwrap();

    let mut h = 0;
    let mut e = 0;

    // Next direction; we use d instead of d + 1 everywhere
    let mut d = 1;

    for i in (0..max).rev() {
        let (mut mu, free_bits) = extract_mask(bits, i);
        mu = rotate_right(mu, d, dims);

        let mut l = 0;
        for x in point.iter().rev() {
            l <<= 1;
            l |= (x >> i) & 1;
        }
        l = t(dims, e, d, l);

        let w = gray_code_inverse(l);
        let r = gray_code_rank(dims, mu, w);

        e ^= rotate_right(entry_point(w), d, dims);
        d = (d + intra_direction(w) + 1) % dims;
        h = (h << free_bits) | r;
    }

    h
}


 
/*fn returns_closure (xs: &[u8]) -> impl Fn(u32) -> u32 {
    let sum: u32 = xs.iter().map(|&x| x as u32).sum();
    move |a| a*sum
}

fn main() {
    println!("Hello, world!");
    let fnoo = returns_closure(&[1, 2, 3, 4, 5, 6]);
    dbg!(fnoo(15));
}*/