1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! The logic to monitor for on-chain transactions and create the relevant claim responses lives
//! here.
//!
//! ChannelMonitor objects are generated by ChannelManager in response to relevant
//! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
//! be made in responding to certain messages, see [`chain::Watch`] for more.
//!
//! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
//! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
//! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
//! security-domain-separated system design, you should consider having multiple paths for
//! ChannelMonitors to get out of the HSM and onto monitoring devices.

use bitcoin::blockdata::block::{Block, BlockHeader};
use bitcoin::blockdata::transaction::{TxOut,Transaction};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;

use bitcoin::hashes::Hash;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};

use bitcoin::secp256k1::{Secp256k1,Signature};
use bitcoin::secp256k1::key::{SecretKey,PublicKey};
use bitcoin::secp256k1;

use ln::{PaymentHash, PaymentPreimage};
use ln::msgs::DecodeError;
use ln::chan_utils;
use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
use ln::channelmanager::HTLCSource;
use chain;
use chain::{BestBlock, WatchedOutput};
use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
use chain::transaction::{OutPoint, TransactionData};
use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
use chain::onchaintx::OnchainTxHandler;
use chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
use chain::Filter;
use util::logger::Logger;
use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48, OptionDeserWrapper};
use util::byte_utils;
use util::events::Event;

use prelude::*;
use core::{cmp, mem};
use std::io::Error;
use core::ops::Deref;
use std::sync::Mutex;

/// An update generated by the underlying Channel itself which contains some new information the
/// ChannelMonitor should be made aware of.
#[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
#[derive(Clone)]
#[must_use]
pub struct ChannelMonitorUpdate {
	pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
	/// The sequence number of this update. Updates *must* be replayed in-order according to this
	/// sequence number (and updates may panic if they are not). The update_id values are strictly
	/// increasing and increase by one for each new update, with one exception specified below.
	///
	/// This sequence number is also used to track up to which points updates which returned
	/// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
	/// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
	///
	/// The only instance where update_id values are not strictly increasing is the case where we
	/// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
	/// its docs for more details.
	pub update_id: u64,
}

/// If:
///    (1) a channel has been force closed and
///    (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
///        this channel's (the backward link's) broadcasted commitment transaction
/// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
/// with the update providing said payment preimage. No other update types are allowed after
/// force-close.
pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;

impl Writeable for ChannelMonitorUpdate {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
		self.update_id.write(w)?;
		(self.updates.len() as u64).write(w)?;
		for update_step in self.updates.iter() {
			update_step.write(w)?;
		}
		write_tlv_fields!(w, {});
		Ok(())
	}
}
impl Readable for ChannelMonitorUpdate {
	fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
		let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
		let update_id: u64 = Readable::read(r)?;
		let len: u64 = Readable::read(r)?;
		let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
		for _ in 0..len {
			updates.push(Readable::read(r)?);
		}
		read_tlv_fields!(r, {});
		Ok(Self { update_id, updates })
	}
}

/// An error enum representing a failure to persist a channel monitor update.
#[derive(Clone, Debug)]
pub enum ChannelMonitorUpdateErr {
	/// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
	/// our state failed, but is expected to succeed at some point in the future).
	///
	/// Such a failure will "freeze" a channel, preventing us from revoking old states or
	/// submitting new commitment transactions to the counterparty. Once the update(s) which failed
	/// have been successfully applied, ChannelManager::channel_monitor_updated can be used to
	/// restore the channel to an operational state.
	///
	/// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
	/// you return a TemporaryFailure you must ensure that it is written to disk safely before
	/// writing out the latest ChannelManager state.
	///
	/// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
	/// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
	/// to claim it on this channel) and those updates must be applied wherever they can be. At
	/// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
	/// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
	/// the channel which would invalidate previous ChannelMonitors are not made when a channel has
	/// been "frozen".
	///
	/// Note that even if updates made after TemporaryFailure succeed you must still call
	/// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
	/// operation.
	///
	/// Note that the update being processed here will not be replayed for you when you call
	/// ChannelManager::channel_monitor_updated, so you must store the update itself along
	/// with the persisted ChannelMonitor on your own local disk prior to returning a
	/// TemporaryFailure. You may, of course, employ a journaling approach, storing only the
	/// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
	/// reload-time.
	///
	/// For deployments where a copy of ChannelMonitors and other local state are backed up in a
	/// remote location (with local copies persisted immediately), it is anticipated that all
	/// updates will return TemporaryFailure until the remote copies could be updated.
	TemporaryFailure,
	/// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
	/// different watchtower and cannot update with all watchtowers that were previously informed
	/// of this channel).
	///
	/// At reception of this error, ChannelManager will force-close the channel and return at
	/// least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at
	/// least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel
	/// update must be rejected.
	///
	/// This failure may also signal a failure to update the local persisted copy of one of
	/// the channel monitor instance.
	///
	/// Note that even when you fail a holder commitment transaction update, you must store the
	/// update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor
	/// broadcasts it (e.g distributed channel-monitor deployment)
	///
	/// In case of distributed watchtowers deployment, the new version must be written to disk, as
	/// state may have been stored but rejected due to a block forcing a commitment broadcast. This
	/// storage is used to claim outputs of rejected state confirmed onchain by another watchtower,
	/// lagging behind on block processing.
	PermanentFailure,
}

/// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
/// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
/// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
/// corrupted.
/// Contains a developer-readable error message.
#[derive(Clone, Debug)]
pub struct MonitorUpdateError(pub &'static str);

/// An event to be processed by the ChannelManager.
#[derive(Clone, PartialEq)]
pub enum MonitorEvent {
	/// A monitor event containing an HTLCUpdate.
	HTLCEvent(HTLCUpdate),

	/// A monitor event that the Channel's commitment transaction was broadcasted.
	CommitmentTxBroadcasted(OutPoint),
}

/// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
/// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
/// preimage claim backward will lead to loss of funds.
#[derive(Clone, PartialEq)]
pub struct HTLCUpdate {
	pub(crate) payment_hash: PaymentHash,
	pub(crate) payment_preimage: Option<PaymentPreimage>,
	pub(crate) source: HTLCSource
}
impl_writeable_tlv_based!(HTLCUpdate, {
	(0, payment_hash, required),
	(2, source, required),
	(4, payment_preimage, option),
});

/// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
/// instead claiming it in its own individual transaction.
pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
/// If an HTLC expires within this many blocks, force-close the channel to broadcast the
/// HTLC-Success transaction.
/// In other words, this is an upper bound on how many blocks we think it can take us to get a
/// transaction confirmed (and we use it in a few more, equivalent, places).
pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
/// Number of blocks by which point we expect our counterparty to have seen new blocks on the
/// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
/// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
/// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
/// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
/// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
/// due to expiration but increase the cost of funds being locked longuer in case of failure.
/// This delay also cover a low-power peer being slow to process blocks and so being behind us on
/// accurate block height.
/// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
/// with at worst this delay, so we are not only using this value as a mercy for them but also
/// us as a safeguard to delay with enough time.
pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
/// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
/// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
// We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
// It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
// keep bumping another claim tx to solve the outpoint.
pub const ANTI_REORG_DELAY: u32 = 6;
/// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
/// refuse to accept a new HTLC.
///
/// This is used for a few separate purposes:
/// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
///    waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
///    fail this HTLC,
/// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
///    condition with the above), we will fail this HTLC without telling the user we received it,
/// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and
///    that HTLC expires within this many blocks, we will simply fail the HTLC instead.
///
/// (1) is all about protecting us - we need enough time to update the channel state before we hit
/// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
///
/// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
/// in a race condition between the user connecting a block (which would fail it) and the user
/// providing us the preimage (which would claim it).
///
/// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may
/// end up force-closing the channel on us to claim it.
pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;

// TODO(devrandom) replace this with HolderCommitmentTransaction
#[derive(Clone, PartialEq)]
struct HolderSignedTx {
	/// txid of the transaction in tx, just used to make comparison faster
	txid: Txid,
	revocation_key: PublicKey,
	a_htlc_key: PublicKey,
	b_htlc_key: PublicKey,
	delayed_payment_key: PublicKey,
	per_commitment_point: PublicKey,
	feerate_per_kw: u32,
	htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
}
impl_writeable_tlv_based!(HolderSignedTx, {
	(0, txid, required),
	(2, revocation_key, required),
	(4, a_htlc_key, required),
	(6, b_htlc_key, required),
	(8, delayed_payment_key, required),
	(10, per_commitment_point, required),
	(12, feerate_per_kw, required),
	(14, htlc_outputs, vec_type)
});

/// We use this to track counterparty commitment transactions and htlcs outputs and
/// use it to generate any justice or 2nd-stage preimage/timeout transactions.
#[derive(PartialEq)]
struct CounterpartyCommitmentTransaction {
	counterparty_delayed_payment_base_key: PublicKey,
	counterparty_htlc_base_key: PublicKey,
	on_counterparty_tx_csv: u16,
	per_htlc: HashMap<Txid, Vec<HTLCOutputInCommitment>>
}

impl Writeable for CounterpartyCommitmentTransaction {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		w.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
		for (ref txid, ref htlcs) in self.per_htlc.iter() {
			w.write_all(&txid[..])?;
			w.write_all(&byte_utils::be64_to_array(htlcs.len() as u64))?;
			for &ref htlc in htlcs.iter() {
				htlc.write(w)?;
			}
		}
		write_tlv_fields!(w, {
			(0, self.counterparty_delayed_payment_base_key, required),
			(2, self.counterparty_htlc_base_key, required),
			(4, self.on_counterparty_tx_csv, required),
		});
		Ok(())
	}
}
impl Readable for CounterpartyCommitmentTransaction {
	fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
		let counterparty_commitment_transaction = {
			let per_htlc_len: u64 = Readable::read(r)?;
			let mut per_htlc = HashMap::with_capacity(cmp::min(per_htlc_len as usize, MAX_ALLOC_SIZE / 64));
			for _  in 0..per_htlc_len {
				let txid: Txid = Readable::read(r)?;
				let htlcs_count: u64 = Readable::read(r)?;
				let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
				for _ in 0..htlcs_count {
					let htlc = Readable::read(r)?;
					htlcs.push(htlc);
				}
				if let Some(_) = per_htlc.insert(txid, htlcs) {
					return Err(DecodeError::InvalidValue);
				}
			}
			let mut counterparty_delayed_payment_base_key = OptionDeserWrapper(None);
			let mut counterparty_htlc_base_key = OptionDeserWrapper(None);
			let mut on_counterparty_tx_csv: u16 = 0;
			read_tlv_fields!(r, {
				(0, counterparty_delayed_payment_base_key, required),
				(2, counterparty_htlc_base_key, required),
				(4, on_counterparty_tx_csv, required),
			});
			CounterpartyCommitmentTransaction {
				counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
				counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
				on_counterparty_tx_csv,
				per_htlc,
			}
		};
		Ok(counterparty_commitment_transaction)
	}
}

/// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
/// transaction causing it.
///
/// Used to determine when the on-chain event can be considered safe from a chain reorganization.
#[derive(PartialEq)]
struct OnchainEventEntry {
	txid: Txid,
	height: u32,
	event: OnchainEvent,
}

impl OnchainEventEntry {
	fn confirmation_threshold(&self) -> u32 {
		let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
		if let OnchainEvent::MaturingOutput {
			descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
		} = self.event {
			// A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
			// it's broadcastable when we see the previous block.
			conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
		}
		conf_threshold
	}

	fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
		best_block.height() >= self.confirmation_threshold()
	}
}

/// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
/// once they mature to enough confirmations (ANTI_REORG_DELAY)
#[derive(PartialEq)]
enum OnchainEvent {
	/// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
	/// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
	/// only win from it, so it's never an OnchainEvent
	HTLCUpdate {
		source: HTLCSource,
		payment_hash: PaymentHash,
	},
	MaturingOutput {
		descriptor: SpendableOutputDescriptor,
	},
}

impl_writeable_tlv_based!(OnchainEventEntry, {
	(0, txid, required),
	(2, height, required),
	(4, event, required),
});

impl_writeable_tlv_based_enum!(OnchainEvent,
	(0, HTLCUpdate) => {
		(0, source, required),
		(2, payment_hash, required),
	},
	(1, MaturingOutput) => {
		(0, descriptor, required),
	},
;);

#[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
#[derive(Clone)]
pub(crate) enum ChannelMonitorUpdateStep {
	LatestHolderCommitmentTXInfo {
		commitment_tx: HolderCommitmentTransaction,
		htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
	},
	LatestCounterpartyCommitmentTXInfo {
		commitment_txid: Txid,
		htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
		commitment_number: u64,
		their_revocation_point: PublicKey,
	},
	PaymentPreimage {
		payment_preimage: PaymentPreimage,
	},
	CommitmentSecret {
		idx: u64,
		secret: [u8; 32],
	},
	/// Used to indicate that the no future updates will occur, and likely that the latest holder
	/// commitment transaction(s) should be broadcast, as the channel has been force-closed.
	ChannelForceClosed {
		/// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
		/// think we've fallen behind!
		should_broadcast: bool,
	},
}

impl_writeable_tlv_based_enum!(ChannelMonitorUpdateStep,
	(0, LatestHolderCommitmentTXInfo) => {
		(0, commitment_tx, required),
		(2, htlc_outputs, vec_type),
	},
	(1, LatestCounterpartyCommitmentTXInfo) => {
		(0, commitment_txid, required),
		(2, commitment_number, required),
		(4, their_revocation_point, required),
		(6, htlc_outputs, vec_type),
	},
	(2, PaymentPreimage) => {
		(0, payment_preimage, required),
	},
	(3, CommitmentSecret) => {
		(0, idx, required),
		(2, secret, required),
	},
	(4, ChannelForceClosed) => {
		(0, should_broadcast, required),
	},
;);

/// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
/// on-chain transactions to ensure no loss of funds occurs.
///
/// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
/// information and are actively monitoring the chain.
///
/// Pending Events or updated HTLCs which have not yet been read out by
/// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
/// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
/// gotten are fully handled before re-serializing the new state.
///
/// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
/// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
/// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
/// returned block hash and the the current chain and then reconnecting blocks to get to the
/// best chain) upon deserializing the object!
pub struct ChannelMonitor<Signer: Sign> {
	#[cfg(test)]
	pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
	#[cfg(not(test))]
	inner: Mutex<ChannelMonitorImpl<Signer>>,
}

pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
	latest_update_id: u64,
	commitment_transaction_number_obscure_factor: u64,

	destination_script: Script,
	broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
	counterparty_payment_script: Script,
	shutdown_script: Script,

	channel_keys_id: [u8; 32],
	holder_revocation_basepoint: PublicKey,
	funding_info: (OutPoint, Script),
	current_counterparty_commitment_txid: Option<Txid>,
	prev_counterparty_commitment_txid: Option<Txid>,

	counterparty_tx_cache: CounterpartyCommitmentTransaction,
	funding_redeemscript: Script,
	channel_value_satoshis: u64,
	// first is the idx of the first of the two revocation points
	their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,

	on_holder_tx_csv: u16,

	commitment_secrets: CounterpartyCommitmentSecrets,
	counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
	/// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
	/// Nor can we figure out their commitment numbers without the commitment transaction they are
	/// spending. Thus, in order to claim them via revocation key, we track all the counterparty
	/// commitment transactions which we find on-chain, mapping them to the commitment number which
	/// can be used to derive the revocation key and claim the transactions.
	counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
	/// Cache used to make pruning of payment_preimages faster.
	/// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
	/// counterparty transactions (ie should remain pretty small).
	/// Serialized to disk but should generally not be sent to Watchtowers.
	counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,

	// We store two holder commitment transactions to avoid any race conditions where we may update
	// some monitors (potentially on watchtowers) but then fail to update others, resulting in the
	// various monitors for one channel being out of sync, and us broadcasting a holder
	// transaction for which we have deleted claim information on some watchtowers.
	prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
	current_holder_commitment_tx: HolderSignedTx,

	// Used just for ChannelManager to make sure it has the latest channel data during
	// deserialization
	current_counterparty_commitment_number: u64,
	// Used just for ChannelManager to make sure it has the latest channel data during
	// deserialization
	current_holder_commitment_number: u64,

	payment_preimages: HashMap<PaymentHash, PaymentPreimage>,

	pending_monitor_events: Vec<MonitorEvent>,
	pending_events: Vec<Event>,

	// Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
	// which to take actions once they reach enough confirmations. Each entry includes the
	// transaction's id and the height when the transaction was confirmed on chain.
	onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,

	// If we get serialized out and re-read, we need to make sure that the chain monitoring
	// interface knows about the TXOs that we want to be notified of spends of. We could probably
	// be smart and derive them from the above storage fields, but its much simpler and more
	// Obviously Correct (tm) if we just keep track of them explicitly.
	outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,

	#[cfg(test)]
	pub onchain_tx_handler: OnchainTxHandler<Signer>,
	#[cfg(not(test))]
	onchain_tx_handler: OnchainTxHandler<Signer>,

	// This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
	// channel has been force-closed. After this is set, no further holder commitment transaction
	// updates may occur, and we panic!() if one is provided.
	lockdown_from_offchain: bool,

	// Set once we've signed a holder commitment transaction and handed it over to our
	// OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
	// may occur, and we fail any such monitor updates.
	//
	// In case of update rejection due to a locally already signed commitment transaction, we
	// nevertheless store update content to track in case of concurrent broadcast by another
	// remote monitor out-of-order with regards to the block view.
	holder_tx_signed: bool,

	// We simply modify best_block in Channel's block_connected so that serialization is
	// consistent but hopefully the users' copy handles block_connected in a consistent way.
	// (we do *not*, however, update them in update_monitor to ensure any local user copies keep
	// their best_block from its state and not based on updated copies that didn't run through
	// the full block_connected).
	best_block: BestBlock,

	secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
}

/// Transaction outputs to watch for on-chain spends.
pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);

#[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
/// Used only in testing and fuzztarget to check serialization roundtrips don't change the
/// underlying object
impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
	fn eq(&self, other: &Self) -> bool {
		let inner = self.inner.lock().unwrap();
		let other = other.inner.lock().unwrap();
		inner.eq(&other)
	}
}

#[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
/// Used only in testing and fuzztarget to check serialization roundtrips don't change the
/// underlying object
impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
	fn eq(&self, other: &Self) -> bool {
		if self.latest_update_id != other.latest_update_id ||
			self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
			self.destination_script != other.destination_script ||
			self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
			self.counterparty_payment_script != other.counterparty_payment_script ||
			self.channel_keys_id != other.channel_keys_id ||
			self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
			self.funding_info != other.funding_info ||
			self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
			self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
			self.counterparty_tx_cache != other.counterparty_tx_cache ||
			self.funding_redeemscript != other.funding_redeemscript ||
			self.channel_value_satoshis != other.channel_value_satoshis ||
			self.their_cur_revocation_points != other.their_cur_revocation_points ||
			self.on_holder_tx_csv != other.on_holder_tx_csv ||
			self.commitment_secrets != other.commitment_secrets ||
			self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
			self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
			self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
			self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
			self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
			self.current_holder_commitment_number != other.current_holder_commitment_number ||
			self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
			self.payment_preimages != other.payment_preimages ||
			self.pending_monitor_events != other.pending_monitor_events ||
			self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
			self.onchain_events_awaiting_threshold_conf != other.onchain_events_awaiting_threshold_conf ||
			self.outputs_to_watch != other.outputs_to_watch ||
			self.lockdown_from_offchain != other.lockdown_from_offchain ||
			self.holder_tx_signed != other.holder_tx_signed
		{
			false
		} else {
			true
		}
	}
}

impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		self.inner.lock().unwrap().write(writer)
	}
}

// These are also used for ChannelMonitorUpdate, above.
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;

impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);

		self.latest_update_id.write(writer)?;

		// Set in initial Channel-object creation, so should always be set by now:
		U48(self.commitment_transaction_number_obscure_factor).write(writer)?;

		self.destination_script.write(writer)?;
		if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
			writer.write_all(&[0; 1])?;
			broadcasted_holder_revokable_script.0.write(writer)?;
			broadcasted_holder_revokable_script.1.write(writer)?;
			broadcasted_holder_revokable_script.2.write(writer)?;
		} else {
			writer.write_all(&[1; 1])?;
		}

		self.counterparty_payment_script.write(writer)?;
		self.shutdown_script.write(writer)?;

		self.channel_keys_id.write(writer)?;
		self.holder_revocation_basepoint.write(writer)?;
		writer.write_all(&self.funding_info.0.txid[..])?;
		writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
		self.funding_info.1.write(writer)?;
		self.current_counterparty_commitment_txid.write(writer)?;
		self.prev_counterparty_commitment_txid.write(writer)?;

		self.counterparty_tx_cache.write(writer)?;
		self.funding_redeemscript.write(writer)?;
		self.channel_value_satoshis.write(writer)?;

		match self.their_cur_revocation_points {
			Some((idx, pubkey, second_option)) => {
				writer.write_all(&byte_utils::be48_to_array(idx))?;
				writer.write_all(&pubkey.serialize())?;
				match second_option {
					Some(second_pubkey) => {
						writer.write_all(&second_pubkey.serialize())?;
					},
					None => {
						writer.write_all(&[0; 33])?;
					},
				}
			},
			None => {
				writer.write_all(&byte_utils::be48_to_array(0))?;
			},
		}

		writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;

		self.commitment_secrets.write(writer)?;

		macro_rules! serialize_htlc_in_commitment {
			($htlc_output: expr) => {
				writer.write_all(&[$htlc_output.offered as u8; 1])?;
				writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
				writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
				writer.write_all(&$htlc_output.payment_hash.0[..])?;
				$htlc_output.transaction_output_index.write(writer)?;
			}
		}

		writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
		for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
			writer.write_all(&txid[..])?;
			writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
			for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
				serialize_htlc_in_commitment!(htlc_output);
				htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
			}
		}

		writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
		for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
			writer.write_all(&txid[..])?;
			writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
		}

		writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
		for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
			writer.write_all(&payment_hash.0[..])?;
			writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
		}

		if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
			writer.write_all(&[1; 1])?;
			prev_holder_tx.write(writer)?;
		} else {
			writer.write_all(&[0; 1])?;
		}

		self.current_holder_commitment_tx.write(writer)?;

		writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
		writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;

		writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
		for payment_preimage in self.payment_preimages.values() {
			writer.write_all(&payment_preimage.0[..])?;
		}

		writer.write_all(&byte_utils::be64_to_array(self.pending_monitor_events.len() as u64))?;
		for event in self.pending_monitor_events.iter() {
			match event {
				MonitorEvent::HTLCEvent(upd) => {
					0u8.write(writer)?;
					upd.write(writer)?;
				},
				MonitorEvent::CommitmentTxBroadcasted(_) => 1u8.write(writer)?
			}
		}

		writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
		for event in self.pending_events.iter() {
			event.write(writer)?;
		}

		self.best_block.block_hash().write(writer)?;
		writer.write_all(&byte_utils::be32_to_array(self.best_block.height()))?;

		writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
		for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
			entry.write(writer)?;
		}

		(self.outputs_to_watch.len() as u64).write(writer)?;
		for (txid, idx_scripts) in self.outputs_to_watch.iter() {
			txid.write(writer)?;
			(idx_scripts.len() as u64).write(writer)?;
			for (idx, script) in idx_scripts.iter() {
				idx.write(writer)?;
				script.write(writer)?;
			}
		}
		self.onchain_tx_handler.write(writer)?;

		self.lockdown_from_offchain.write(writer)?;
		self.holder_tx_signed.write(writer)?;

		write_tlv_fields!(writer, {});

		Ok(())
	}
}

impl<Signer: Sign> ChannelMonitor<Signer> {
	pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_pubkey: &PublicKey,
	                  on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
	                  channel_parameters: &ChannelTransactionParameters,
	                  funding_redeemscript: Script, channel_value_satoshis: u64,
	                  commitment_transaction_number_obscure_factor: u64,
	                  initial_holder_commitment_tx: HolderCommitmentTransaction,
	                  best_block: BestBlock) -> ChannelMonitor<Signer> {

		assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
		let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize());
		let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
		let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
		let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();

		let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
		let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
		let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
		let counterparty_tx_cache = CounterpartyCommitmentTransaction { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv, per_htlc: HashMap::new() };

		let channel_keys_id = keys.channel_keys_id();
		let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;

		// block for Rust 1.34 compat
		let (holder_commitment_tx, current_holder_commitment_number) = {
			let trusted_tx = initial_holder_commitment_tx.trust();
			let txid = trusted_tx.txid();

			let tx_keys = trusted_tx.keys();
			let holder_commitment_tx = HolderSignedTx {
				txid,
				revocation_key: tx_keys.revocation_key,
				a_htlc_key: tx_keys.broadcaster_htlc_key,
				b_htlc_key: tx_keys.countersignatory_htlc_key,
				delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
				per_commitment_point: tx_keys.per_commitment_point,
				feerate_per_kw: trusted_tx.feerate_per_kw(),
				htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
			};
			(holder_commitment_tx, trusted_tx.commitment_number())
		};

		let onchain_tx_handler =
			OnchainTxHandler::new(destination_script.clone(), keys,
			channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());

		let mut outputs_to_watch = HashMap::new();
		outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);

		ChannelMonitor {
			inner: Mutex::new(ChannelMonitorImpl {
				latest_update_id: 0,
				commitment_transaction_number_obscure_factor,

				destination_script: destination_script.clone(),
				broadcasted_holder_revokable_script: None,
				counterparty_payment_script,
				shutdown_script,

				channel_keys_id,
				holder_revocation_basepoint,
				funding_info,
				current_counterparty_commitment_txid: None,
				prev_counterparty_commitment_txid: None,

				counterparty_tx_cache,
				funding_redeemscript,
				channel_value_satoshis,
				their_cur_revocation_points: None,

				on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,

				commitment_secrets: CounterpartyCommitmentSecrets::new(),
				counterparty_claimable_outpoints: HashMap::new(),
				counterparty_commitment_txn_on_chain: HashMap::new(),
				counterparty_hash_commitment_number: HashMap::new(),

				prev_holder_signed_commitment_tx: None,
				current_holder_commitment_tx: holder_commitment_tx,
				current_counterparty_commitment_number: 1 << 48,
				current_holder_commitment_number,

				payment_preimages: HashMap::new(),
				pending_monitor_events: Vec::new(),
				pending_events: Vec::new(),

				onchain_events_awaiting_threshold_conf: Vec::new(),
				outputs_to_watch,

				onchain_tx_handler,

				lockdown_from_offchain: false,
				holder_tx_signed: false,

				best_block,

				secp_ctx,
			}),
		}
	}

	#[cfg(test)]
	fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
		self.inner.lock().unwrap().provide_secret(idx, secret)
	}

	/// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
	/// The monitor watches for it to be broadcasted and then uses the HTLC information (and
	/// possibly future revocation/preimage information) to claim outputs where possible.
	/// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
	pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
		&self,
		txid: Txid,
		htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
		commitment_number: u64,
		their_revocation_point: PublicKey,
		logger: &L,
	) where L::Target: Logger {
		self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
			txid, htlc_outputs, commitment_number, their_revocation_point, logger)
	}

	#[cfg(test)]
	fn provide_latest_holder_commitment_tx(
		&self,
		holder_commitment_tx: HolderCommitmentTransaction,
		htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
	) -> Result<(), MonitorUpdateError> {
		self.inner.lock().unwrap().provide_latest_holder_commitment_tx(
			holder_commitment_tx, htlc_outputs)
	}

	#[cfg(test)]
	pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
		&self,
		payment_hash: &PaymentHash,
		payment_preimage: &PaymentPreimage,
		broadcaster: &B,
		fee_estimator: &F,
		logger: &L,
	) where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().provide_payment_preimage(
			payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
	}

	pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
		&self,
		broadcaster: &B,
		logger: &L,
	) where
		B::Target: BroadcasterInterface,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
	}

	/// Updates a ChannelMonitor on the basis of some new information provided by the Channel
	/// itself.
	///
	/// panics if the given update is not the next update by update_id.
	pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
		&self,
		updates: &ChannelMonitorUpdate,
		broadcaster: &B,
		fee_estimator: &F,
		logger: &L,
	) -> Result<(), MonitorUpdateError>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
	}

	/// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
	/// ChannelMonitor.
	pub fn get_latest_update_id(&self) -> u64 {
		self.inner.lock().unwrap().get_latest_update_id()
	}

	/// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
	pub fn get_funding_txo(&self) -> (OutPoint, Script) {
		self.inner.lock().unwrap().get_funding_txo().clone()
	}

	/// Gets a list of txids, with their output scripts (in the order they appear in the
	/// transaction), which we must learn about spends of via block_connected().
	pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
		self.inner.lock().unwrap().get_outputs_to_watch()
			.iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
	}

	/// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
	/// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
	/// have been registered.
	pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
		let lock = self.inner.lock().unwrap();
		filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
		for (txid, outputs) in lock.get_outputs_to_watch().iter() {
			for (index, script_pubkey) in outputs.iter() {
				assert!(*index <= u16::max_value() as u32);
				filter.register_output(WatchedOutput {
					block_hash: None,
					outpoint: OutPoint { txid: *txid, index: *index as u16 },
					script_pubkey: script_pubkey.clone(),
				});
			}
		}
	}

	/// Get the list of HTLCs who's status has been updated on chain. This should be called by
	/// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
	pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
		self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
	}

	/// Gets the list of pending events which were generated by previous actions, clearing the list
	/// in the process.
	///
	/// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
	/// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
	/// no internal locking in ChannelMonitors.
	pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
		self.inner.lock().unwrap().get_and_clear_pending_events()
	}

	pub(crate) fn get_min_seen_secret(&self) -> u64 {
		self.inner.lock().unwrap().get_min_seen_secret()
	}

	pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
		self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
	}

	pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
		self.inner.lock().unwrap().get_cur_holder_commitment_number()
	}

	/// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
	/// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
	/// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
	/// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
	/// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
	/// broadcast them if counterparty don't close channel with his higher commitment transaction after a
	/// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
	/// out-of-band the other node operator to coordinate with him if option is available to you.
	/// In any-case, choice is up to the user.
	pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
	where L::Target: Logger {
		self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
	}

	/// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
	/// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
	/// revoked commitment transaction.
	#[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
	pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
	where L::Target: Logger {
		self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
	}

	/// Processes transactions in a newly connected block, which may result in any of the following:
	/// - update the monitor's state against resolved HTLCs
	/// - punish the counterparty in the case of seeing a revoked commitment transaction
	/// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
	/// - detect settled outputs for later spending
	/// - schedule and bump any in-flight claims
	///
	/// Returns any new outputs to watch from `txdata`; after called, these are also included in
	/// [`get_outputs_to_watch`].
	///
	/// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
	pub fn block_connected<B: Deref, F: Deref, L: Deref>(
		&self,
		header: &BlockHeader,
		txdata: &TransactionData,
		height: u32,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) -> Vec<TransactionOutputs>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().block_connected(
			header, txdata, height, broadcaster, fee_estimator, logger)
	}

	/// Determines if the disconnected block contained any transactions of interest and updates
	/// appropriately.
	pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
		&self,
		header: &BlockHeader,
		height: u32,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().block_disconnected(
			header, height, broadcaster, fee_estimator, logger)
	}

	/// Processes transactions confirmed in a block with the given header and height, returning new
	/// outputs to watch. See [`block_connected`] for details.
	///
	/// Used instead of [`block_connected`] by clients that are notified of transactions rather than
	/// blocks. See [`chain::Confirm`] for calling expectations.
	///
	/// [`block_connected`]: Self::block_connected
	pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
		&self,
		header: &BlockHeader,
		txdata: &TransactionData,
		height: u32,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) -> Vec<TransactionOutputs>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().transactions_confirmed(
			header, txdata, height, broadcaster, fee_estimator, logger)
	}

	/// Processes a transaction that was reorganized out of the chain.
	///
	/// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
	/// than blocks. See [`chain::Confirm`] for calling expectations.
	///
	/// [`block_disconnected`]: Self::block_disconnected
	pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
		&self,
		txid: &Txid,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().transaction_unconfirmed(
			txid, broadcaster, fee_estimator, logger);
	}

	/// Updates the monitor with the current best chain tip, returning new outputs to watch. See
	/// [`block_connected`] for details.
	///
	/// Used instead of [`block_connected`] by clients that are notified of transactions rather than
	/// blocks. See [`chain::Confirm`] for calling expectations.
	///
	/// [`block_connected`]: Self::block_connected
	pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
		&self,
		header: &BlockHeader,
		height: u32,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) -> Vec<TransactionOutputs>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.inner.lock().unwrap().best_block_updated(
			header, height, broadcaster, fee_estimator, logger)
	}

	/// Returns the set of txids that should be monitored for re-organization out of the chain.
	pub fn get_relevant_txids(&self) -> Vec<Txid> {
		let inner = self.inner.lock().unwrap();
		let mut txids: Vec<Txid> = inner.onchain_events_awaiting_threshold_conf
			.iter()
			.map(|entry| entry.txid)
			.chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
			.collect();
		txids.sort_unstable();
		txids.dedup();
		txids
	}

	/// Gets the latest best block which was connected either via the [`chain::Listen`] or
	/// [`chain::Confirm`] interfaces.
	pub fn current_best_block(&self) -> BestBlock {
		self.inner.lock().unwrap().best_block.clone()
	}
}

impl<Signer: Sign> ChannelMonitorImpl<Signer> {
	/// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
	/// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
	/// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
	fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
		if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
			return Err(MonitorUpdateError("Previous secret did not match new one"));
		}

		// Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
		// events for now-revoked/fulfilled HTLCs.
		if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
			for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
				*source = None;
			}
		}

		if !self.payment_preimages.is_empty() {
			let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
			let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
			let min_idx = self.get_min_seen_secret();
			let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;

			self.payment_preimages.retain(|&k, _| {
				for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
					if k == htlc.payment_hash {
						return true
					}
				}
				if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
					for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
						if k == htlc.payment_hash {
							return true
						}
					}
				}
				let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
					if *cn < min_idx {
						return true
					}
					true
				} else { false };
				if contains {
					counterparty_hash_commitment_number.remove(&k);
				}
				false
			});
		}

		Ok(())
	}

	pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger {
		// TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
		// so that a remote monitor doesn't learn anything unless there is a malicious close.
		// (only maybe, sadly we cant do the same for local info, as we need to be aware of
		// timeouts)
		for &(ref htlc, _) in &htlc_outputs {
			self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
		}

		log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
		self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
		self.current_counterparty_commitment_txid = Some(txid);
		self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
		self.current_counterparty_commitment_number = commitment_number;
		//TODO: Merge this into the other per-counterparty-transaction output storage stuff
		match self.their_cur_revocation_points {
			Some(old_points) => {
				if old_points.0 == commitment_number + 1 {
					self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
				} else if old_points.0 == commitment_number + 2 {
					if let Some(old_second_point) = old_points.2 {
						self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
					} else {
						self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
					}
				} else {
					self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
				}
			},
			None => {
				self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
			}
		}
		let mut htlcs = Vec::with_capacity(htlc_outputs.len());
		for htlc in htlc_outputs {
			if htlc.0.transaction_output_index.is_some() {
				htlcs.push(htlc.0);
			}
		}
		self.counterparty_tx_cache.per_htlc.insert(txid, htlcs);
	}

	/// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
	/// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
	/// is important that any clones of this channel monitor (including remote clones) by kept
	/// up-to-date as our holder commitment transaction is updated.
	/// Panics if set_on_holder_tx_csv has never been called.
	fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), MonitorUpdateError> {
		// block for Rust 1.34 compat
		let mut new_holder_commitment_tx = {
			let trusted_tx = holder_commitment_tx.trust();
			let txid = trusted_tx.txid();
			let tx_keys = trusted_tx.keys();
			self.current_holder_commitment_number = trusted_tx.commitment_number();
			HolderSignedTx {
				txid,
				revocation_key: tx_keys.revocation_key,
				a_htlc_key: tx_keys.broadcaster_htlc_key,
				b_htlc_key: tx_keys.countersignatory_htlc_key,
				delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
				per_commitment_point: tx_keys.per_commitment_point,
				feerate_per_kw: trusted_tx.feerate_per_kw(),
				htlc_outputs,
			}
		};
		self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
		mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
		self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
		if self.holder_tx_signed {
			return Err(MonitorUpdateError("Latest holder commitment signed has already been signed, update is rejected"));
		}
		Ok(())
	}

	/// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
	/// commitment_tx_infos which contain the payment hash have been revoked.
	fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B, fee_estimator: &F, logger: &L)
	where B::Target: BroadcasterInterface,
		    F::Target: FeeEstimator,
		    L::Target: Logger,
	{
		self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());

		// If the channel is force closed, try to claim the output from this preimage.
		// First check if a counterparty commitment transaction has been broadcasted:
		macro_rules! claim_htlcs {
			($commitment_number: expr, $txid: expr) => {
				let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
				self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
			}
		}
		if let Some(txid) = self.current_counterparty_commitment_txid {
			if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
				claim_htlcs!(*commitment_number, txid);
				return;
			}
		}
		if let Some(txid) = self.prev_counterparty_commitment_txid {
			if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
				claim_htlcs!(*commitment_number, txid);
				return;
			}
		}

		// Then if a holder commitment transaction has been seen on-chain, broadcast transactions
		// claiming the HTLC output from each of the holder commitment transactions.
		// Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
		// *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
		// holder commitment transactions.
		if self.broadcasted_holder_revokable_script.is_some() {
			// Assume that the broadcasted commitment transaction confirmed in the current best
			// block. Even if not, its a reasonable metric for the bump criteria on the HTLC
			// transactions.
			let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
			self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
			if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
				let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
				self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
			}
		}
	}

	pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
		where B::Target: BroadcasterInterface,
					L::Target: Logger,
	{
		for tx in self.get_latest_holder_commitment_txn(logger).iter() {
			log_info!(logger, "Broadcasting local {}", log_tx!(tx));
			broadcaster.broadcast_transaction(tx);
		}
		self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
	}

	pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &L) -> Result<(), MonitorUpdateError>
	where B::Target: BroadcasterInterface,
		    F::Target: FeeEstimator,
		    L::Target: Logger,
	{
		// ChannelMonitor updates may be applied after force close if we receive a
		// preimage for a broadcasted commitment transaction HTLC output that we'd
		// like to claim on-chain. If this is the case, we no longer have guaranteed
		// access to the monitor's update ID, so we use a sentinel value instead.
		if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
			match updates.updates[0] {
				ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
				_ => panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage"),
			}
			assert_eq!(updates.updates.len(), 1);
		} else if self.latest_update_id + 1 != updates.update_id {
			panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
		}
		for update in updates.updates.iter() {
			match update {
				ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
					log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
					if self.lockdown_from_offchain { panic!(); }
					self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone())?
				}
				ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_revocation_point } => {
					log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
					self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_revocation_point, logger)
				},
				ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
					log_trace!(logger, "Updating ChannelMonitor with payment preimage");
					self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, fee_estimator, logger)
				},
				ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
					log_trace!(logger, "Updating ChannelMonitor with commitment secret");
					self.provide_secret(*idx, *secret)?
				},
				ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
					log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
					self.lockdown_from_offchain = true;
					if *should_broadcast {
						self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
					} else if !self.holder_tx_signed {
						log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
					} else {
						// If we generated a MonitorEvent::CommitmentTxBroadcasted, the ChannelManager
						// will still give us a ChannelForceClosed event with !should_broadcast, but we
						// shouldn't print the scary warning above.
						log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
					}
				}
			}
		}
		self.latest_update_id = updates.update_id;
		Ok(())
	}

	pub fn get_latest_update_id(&self) -> u64 {
		self.latest_update_id
	}

	pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
		&self.funding_info
	}

	pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
		// If we've detected a counterparty commitment tx on chain, we must include it in the set
		// of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
		// its trivial to do, double-check that here.
		for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
			self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
		}
		&self.outputs_to_watch
	}

	pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
		let mut ret = Vec::new();
		mem::swap(&mut ret, &mut self.pending_monitor_events);
		ret
	}

	pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
		let mut ret = Vec::new();
		mem::swap(&mut ret, &mut self.pending_events);
		ret
	}

	/// Can only fail if idx is < get_min_seen_secret
	fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
		self.commitment_secrets.get_secret(idx)
	}

	pub(crate) fn get_min_seen_secret(&self) -> u64 {
		self.commitment_secrets.get_min_seen_secret()
	}

	pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
		self.current_counterparty_commitment_number
	}

	pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
		self.current_holder_commitment_number
	}

	/// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
	/// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
	/// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
	/// HTLC-Success/HTLC-Timeout transactions.
	/// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
	/// revoked counterparty commitment tx
	fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<PackageTemplate>, TransactionOutputs) where L::Target: Logger {
		// Most secp and related errors trying to create keys means we have no hope of constructing
		// a spend transaction...so we return no transactions to broadcast
		let mut claimable_outpoints = Vec::new();
		let mut watch_outputs = Vec::new();

		let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
		let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);

		macro_rules! ignore_error {
			( $thing : expr ) => {
				match $thing {
					Ok(a) => a,
					Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
				}
			};
		}

		let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
		if commitment_number >= self.get_min_seen_secret() {
			let secret = self.get_secret(commitment_number).unwrap();
			let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
			let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
			let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
			let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_tx_cache.counterparty_delayed_payment_base_key));

			let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_tx_cache.on_counterparty_tx_csv, &delayed_key);
			let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();

			// First, process non-htlc outputs (to_holder & to_counterparty)
			for (idx, outp) in tx.output.iter().enumerate() {
				if outp.script_pubkey == revokeable_p2wsh {
					let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_tx_cache.on_counterparty_tx_csv);
					let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, true, height);
					claimable_outpoints.push(justice_package);
				}
			}

			// Then, try to find revoked htlc outputs
			if let Some(ref per_commitment_data) = per_commitment_option {
				for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
					if let Some(transaction_output_index) = htlc.transaction_output_index {
						if transaction_output_index as usize >= tx.output.len() ||
								tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
							return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
						}
						let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone());
						let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
						claimable_outpoints.push(justice_package);
					}
				}
			}

			// Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
			if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
				// We're definitely a counterparty commitment transaction!
				log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
				for (idx, outp) in tx.output.iter().enumerate() {
					watch_outputs.push((idx as u32, outp.clone()));
				}
				self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);

				macro_rules! check_htlc_fails {
					($txid: expr, $commitment_tx: expr) => {
						if let Some(ref outpoints) = self.counterparty_claimable_outpoints.get($txid) {
							for &(ref htlc, ref source_option) in outpoints.iter() {
								if let &Some(ref source) = source_option {
									self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
										if entry.height != height { return true; }
										match entry.event {
											OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
												*update_source != **source
											},
											_ => true,
										}
									});
									let entry = OnchainEventEntry {
										txid: *$txid,
										height,
										event: OnchainEvent::HTLCUpdate {
											source: (**source).clone(),
											payment_hash: htlc.payment_hash.clone(),
										},
									};
									log_info!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of revoked counterparty commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, entry.confirmation_threshold());
									self.onchain_events_awaiting_threshold_conf.push(entry);
								}
							}
						}
					}
				}
				if let Some(ref txid) = self.current_counterparty_commitment_txid {
					check_htlc_fails!(txid, "current");
				}
				if let Some(ref txid) = self.prev_counterparty_commitment_txid {
					check_htlc_fails!(txid, "counterparty");
				}
				// No need to check holder commitment txn, symmetric HTLCSource must be present as per-htlc data on counterparty commitment tx
			}
		} else if let Some(per_commitment_data) = per_commitment_option {
			// While this isn't useful yet, there is a potential race where if a counterparty
			// revokes a state at the same time as the commitment transaction for that state is
			// confirmed, and the watchtower receives the block before the user, the user could
			// upload a new ChannelMonitor with the revocation secret but the watchtower has
			// already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
			// not being generated by the above conditional. Thus, to be safe, we go ahead and
			// insert it here.
			for (idx, outp) in tx.output.iter().enumerate() {
				watch_outputs.push((idx as u32, outp.clone()));
			}
			self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);

			log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);

			macro_rules! check_htlc_fails {
				($txid: expr, $commitment_tx: expr, $id: tt) => {
					if let Some(ref latest_outpoints) = self.counterparty_claimable_outpoints.get($txid) {
						$id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
							if let &Some(ref source) = source_option {
								// Check if the HTLC is present in the commitment transaction that was
								// broadcast, but not if it was below the dust limit, which we should
								// fail backwards immediately as there is no way for us to learn the
								// payment_preimage.
								// Note that if the dust limit were allowed to change between
								// commitment transactions we'd want to be check whether *any*
								// broadcastable commitment transaction has the HTLC in it, but it
								// cannot currently change after channel initialization, so we don't
								// need to here.
								for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
									if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
										continue $id;
									}
								}
								log_trace!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of counterparty commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
								self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
									if entry.height != height { return true; }
									match entry.event {
										OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
											*update_source != **source
										},
										_ => true,
									}
								});
								self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
									txid: *$txid,
									height,
									event: OnchainEvent::HTLCUpdate {
										source: (**source).clone(),
										payment_hash: htlc.payment_hash.clone(),
									},
								});
							}
						}
					}
				}
			}
			if let Some(ref txid) = self.current_counterparty_commitment_txid {
				check_htlc_fails!(txid, "current", 'current_loop);
			}
			if let Some(ref txid) = self.prev_counterparty_commitment_txid {
				check_htlc_fails!(txid, "previous", 'prev_loop);
			}

			let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
			for req in htlc_claim_reqs {
				claimable_outpoints.push(req);
			}

		}
		(claimable_outpoints, (commitment_txid, watch_outputs))
	}

	fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<PackageTemplate> {
		let mut claimable_outpoints = Vec::new();
		if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
			if let Some(revocation_points) = self.their_cur_revocation_points {
				let revocation_point_option =
					// If the counterparty commitment tx is the latest valid state, use their latest
					// per-commitment point
					if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
					else if let Some(point) = revocation_points.2.as_ref() {
						// If counterparty commitment tx is the state previous to the latest valid state, use
						// their previous per-commitment point (non-atomicity of revocation means it's valid for
						// them to temporarily have two valid commitment txns from our viewpoint)
						if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
					} else { None };
				if let Some(revocation_point) = revocation_point_option {
					for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
						if let Some(transaction_output_index) = htlc.transaction_output_index {
							if let Some(transaction) = tx {
								if transaction_output_index as usize >= transaction.output.len() ||
									transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
										return claimable_outpoints; // Corrupted per_commitment_data, fuck this user
									}
							}
							let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
							if preimage.is_some() || !htlc.offered {
								let counterparty_htlc_outp = if htlc.offered { PackageSolvingData::CounterpartyOfferedHTLCOutput(CounterpartyOfferedHTLCOutput::build(*revocation_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, preimage.unwrap(), htlc.clone())) } else { PackageSolvingData::CounterpartyReceivedHTLCOutput(CounterpartyReceivedHTLCOutput::build(*revocation_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, htlc.clone())) };
								let aggregation = if !htlc.offered { false } else { true };
								let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
								claimable_outpoints.push(counterparty_package);
							}
						}
					}
				}
			}
		}
		claimable_outpoints
	}

	/// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
	fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
		let htlc_txid = tx.txid();
		if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
			return (Vec::new(), None)
		}

		macro_rules! ignore_error {
			( $thing : expr ) => {
				match $thing {
					Ok(a) => a,
					Err(_) => return (Vec::new(), None)
				}
			};
		}

		let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
		let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
		let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);

		log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, 0);
		let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, tx.output[0].value, self.counterparty_tx_cache.on_counterparty_tx_csv);
		let justice_package = PackageTemplate::build_package(htlc_txid, 0, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, true, height);
		let claimable_outpoints = vec!(justice_package);
		let outputs = vec![(0, tx.output[0].clone())];
		(claimable_outpoints, Some((htlc_txid, outputs)))
	}

	// Returns (1) `PackageTemplate`s that can be given to the OnChainTxHandler, so that the handler can
	// broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
	// script so we can detect whether a holder transaction has been seen on-chain.
	fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
		let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());

		let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
		let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));

		for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
			if let Some(transaction_output_index) = htlc.transaction_output_index {
				let htlc_output = if htlc.offered {
						HolderHTLCOutput::build_offered(htlc.amount_msat, htlc.cltv_expiry)
					} else {
						let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
							preimage.clone()
						} else {
							// We can't build an HTLC-Success transaction without the preimage
							continue;
						};
						HolderHTLCOutput::build_accepted(payment_preimage, htlc.amount_msat)
					};
				let htlc_package = PackageTemplate::build_package(holder_tx.txid, transaction_output_index, PackageSolvingData::HolderHTLCOutput(htlc_output), htlc.cltv_expiry, false, conf_height);
				claim_requests.push(htlc_package);
			}
		}

		(claim_requests, broadcasted_holder_revokable_script)
	}

	// Returns holder HTLC outputs to watch and react to in case of spending.
	fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
		let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
		for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
			if let Some(transaction_output_index) = htlc.transaction_output_index {
				watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
			}
		}
		watch_outputs
	}

	/// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
	/// revoked using data in holder_claimable_outpoints.
	/// Should not be used if check_spend_revoked_transaction succeeds.
	fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<PackageTemplate>, TransactionOutputs) where L::Target: Logger {
		let commitment_txid = tx.txid();
		let mut claim_requests = Vec::new();
		let mut watch_outputs = Vec::new();

		macro_rules! wait_threshold_conf {
			($source: expr, $commitment_tx: expr, $payment_hash: expr) => {
				self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
					if entry.height != height { return true; }
					match entry.event {
						OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
							*update_source != $source
						},
						_ => true,
					}
				});
				let entry = OnchainEventEntry {
					txid: commitment_txid,
					height,
					event: OnchainEvent::HTLCUpdate { source: $source, payment_hash: $payment_hash },
				};
				log_trace!(logger, "Failing HTLC with payment_hash {} from {} holder commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, entry.confirmation_threshold());
				self.onchain_events_awaiting_threshold_conf.push(entry);
			}
		}

		macro_rules! append_onchain_update {
			($updates: expr, $to_watch: expr) => {
				claim_requests = $updates.0;
				self.broadcasted_holder_revokable_script = $updates.1;
				watch_outputs.append(&mut $to_watch);
			}
		}

		// HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
		let mut is_holder_tx = false;

		if self.current_holder_commitment_tx.txid == commitment_txid {
			is_holder_tx = true;
			log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
			let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
			let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
			append_onchain_update!(res, to_watch);
		} else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
			if holder_tx.txid == commitment_txid {
				is_holder_tx = true;
				log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
				let res = self.get_broadcasted_holder_claims(holder_tx, height);
				let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
				append_onchain_update!(res, to_watch);
			}
		}

		macro_rules! fail_dust_htlcs_after_threshold_conf {
			($holder_tx: expr) => {
				for &(ref htlc, _, ref source) in &$holder_tx.htlc_outputs {
					if htlc.transaction_output_index.is_none() {
						if let &Some(ref source) = source {
							wait_threshold_conf!(source.clone(), "lastest", htlc.payment_hash.clone());
						}
					}
				}
			}
		}

		if is_holder_tx {
			fail_dust_htlcs_after_threshold_conf!(self.current_holder_commitment_tx);
			if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
				fail_dust_htlcs_after_threshold_conf!(holder_tx);
			}
		}

		(claim_requests, (commitment_txid, watch_outputs))
	}

	pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
		log_debug!(logger, "Getting signed latest holder commitment transaction!");
		self.holder_tx_signed = true;
		let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
		let txid = commitment_tx.txid();
		let mut holder_transactions = vec![commitment_tx];
		for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
			if let Some(vout) = htlc.0.transaction_output_index {
				let preimage = if !htlc.0.offered {
					if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
						// We can't build an HTLC-Success transaction without the preimage
						continue;
					}
				} else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
					// Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
					// current locktime requirements on-chain. We will broadcast them in
					// `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
					// Note that we add + 1 as transactions are broadcastable when they can be
					// confirmed in the next block.
					continue;
				} else { None };
				if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
					&::bitcoin::OutPoint { txid, vout }, &preimage) {
					holder_transactions.push(htlc_tx);
				}
			}
		}
		// We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
		// The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
		holder_transactions
	}

	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	/// Note that this includes possibly-locktimed-in-the-future transactions!
	fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
		log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
		let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
		let txid = commitment_tx.txid();
		let mut holder_transactions = vec![commitment_tx];
		for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
			if let Some(vout) = htlc.0.transaction_output_index {
				let preimage = if !htlc.0.offered {
					if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
						// We can't build an HTLC-Success transaction without the preimage
						continue;
					}
				} else { None };
				if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
					&::bitcoin::OutPoint { txid, vout }, &preimage) {
					holder_transactions.push(htlc_tx);
				}
			}
		}
		holder_transactions
	}

	pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
		where B::Target: BroadcasterInterface,
		      F::Target: FeeEstimator,
					L::Target: Logger,
	{
		let block_hash = header.block_hash();
		log_trace!(logger, "New best block {} at height {}", block_hash, height);
		self.best_block = BestBlock::new(block_hash, height);

		self.transactions_confirmed(header, txdata, height, broadcaster, fee_estimator, logger)
	}

	fn best_block_updated<B: Deref, F: Deref, L: Deref>(
		&mut self,
		header: &BlockHeader,
		height: u32,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) -> Vec<TransactionOutputs>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		let block_hash = header.block_hash();
		log_trace!(logger, "New best block {} at height {}", block_hash, height);

		if height > self.best_block.height() {
			self.best_block = BestBlock::new(block_hash, height);
			self.block_confirmed(height, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
		} else if block_hash != self.best_block.block_hash() {
			self.best_block = BestBlock::new(block_hash, height);
			self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
			self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
			Vec::new()
		} else { Vec::new() }
	}

	fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
		&mut self,
		header: &BlockHeader,
		txdata: &TransactionData,
		height: u32,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) -> Vec<TransactionOutputs>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		let txn_matched = self.filter_block(txdata);
		for tx in &txn_matched {
			let mut output_val = 0;
			for out in tx.output.iter() {
				if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
				output_val += out.value;
				if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
			}
		}

		let block_hash = header.block_hash();
		log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());

		let mut watch_outputs = Vec::new();
		let mut claimable_outpoints = Vec::new();
		for tx in &txn_matched {
			if tx.input.len() == 1 {
				// Assuming our keys were not leaked (in which case we're screwed no matter what),
				// commitment transactions and HTLC transactions will all only ever have one input,
				// which is an easy way to filter out any potential non-matching txn for lazy
				// filters.
				let prevout = &tx.input[0].previous_output;
				if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
					if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
						let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
						if !new_outputs.1.is_empty() {
							watch_outputs.push(new_outputs);
						}
						if new_outpoints.is_empty() {
							let (mut new_outpoints, new_outputs) = self.check_spend_holder_transaction(&tx, height, &logger);
							if !new_outputs.1.is_empty() {
								watch_outputs.push(new_outputs);
							}
							claimable_outpoints.append(&mut new_outpoints);
						}
						claimable_outpoints.append(&mut new_outpoints);
					}
				} else {
					if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
						let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
						claimable_outpoints.append(&mut new_outpoints);
						if let Some(new_outputs) = new_outputs_option {
							watch_outputs.push(new_outputs);
						}
					}
				}
			}
			// While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
			// can also be resolved in a few other ways which can have more than one output. Thus,
			// we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
			self.is_resolving_htlc_output(&tx, height, &logger);

			self.is_paying_spendable_output(&tx, height, &logger);
		}

		if height > self.best_block.height() {
			self.best_block = BestBlock::new(block_hash, height);
		}

		self.block_confirmed(height, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
	}

	/// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
	/// `self.best_block` before calling if a new best blockchain tip is available. More
	/// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
	/// complexity especially in `OnchainTx::update_claims_view`.
	///
	/// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
	/// confirmed at, even if it is not the current best height.
	fn block_confirmed<B: Deref, F: Deref, L: Deref>(
		&mut self,
		conf_height: u32,
		txn_matched: Vec<&Transaction>,
		mut watch_outputs: Vec<TransactionOutputs>,
		mut claimable_outpoints: Vec<PackageTemplate>,
		broadcaster: &B,
		fee_estimator: &F,
		logger: &L,
	) -> Vec<TransactionOutputs>
	where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		debug_assert!(self.best_block.height() >= conf_height);

		let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
		if should_broadcast {
			let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone());
			let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), false, self.best_block.height());
			claimable_outpoints.push(commitment_package);
			self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
			let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
			self.holder_tx_signed = true;
			// Because we're broadcasting a commitment transaction, we should construct the package
			// assuming it gets confirmed in the next block. Sadly, we have code which considers
			// "not yet confirmed" things as discardable, so we cannot do that here.
			let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
			let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
			if !new_outputs.is_empty() {
				watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
			}
			claimable_outpoints.append(&mut new_outpoints);
		}

		// Find which on-chain events have reached their confirmation threshold.
		let onchain_events_awaiting_threshold_conf =
			self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
		let mut onchain_events_reaching_threshold_conf = Vec::new();
		for entry in onchain_events_awaiting_threshold_conf {
			if entry.has_reached_confirmation_threshold(&self.best_block) {
				onchain_events_reaching_threshold_conf.push(entry);
			} else {
				self.onchain_events_awaiting_threshold_conf.push(entry);
			}
		}

		// Used to check for duplicate HTLC resolutions.
		#[cfg(debug_assertions)]
		let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
			.iter()
			.filter_map(|entry| match &entry.event {
				OnchainEvent::HTLCUpdate { source, .. } => Some(source),
				OnchainEvent::MaturingOutput { .. } => None,
			})
			.collect();
		#[cfg(debug_assertions)]
		let mut matured_htlcs = Vec::new();

		// Produce actionable events from on-chain events having reached their threshold.
		for entry in onchain_events_reaching_threshold_conf.drain(..) {
			match entry.event {
				OnchainEvent::HTLCUpdate { ref source, payment_hash } => {
					// Check for duplicate HTLC resolutions.
					#[cfg(debug_assertions)]
					{
						debug_assert!(
							unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
							"An unmature HTLC transaction conflicts with a maturing one; failed to \
							 call either transaction_unconfirmed for the conflicting transaction \
							 or block_disconnected for a block containing it.");
						debug_assert!(
							matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
							"A matured HTLC transaction conflicts with a maturing one; failed to \
							 call either transaction_unconfirmed for the conflicting transaction \
							 or block_disconnected for a block containing it.");
						matured_htlcs.push(source.clone());
					}

					log_debug!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!(payment_hash.0));
					self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
						payment_hash: payment_hash,
						payment_preimage: None,
						source: source.clone(),
					}));
				},
				OnchainEvent::MaturingOutput { descriptor } => {
					log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
					self.pending_events.push(Event::SpendableOutputs {
						outputs: vec![descriptor]
					});
				}
			}
		}

		self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);

		// Determine new outputs to watch by comparing against previously known outputs to watch,
		// updating the latter in the process.
		watch_outputs.retain(|&(ref txid, ref txouts)| {
			let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
			self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
		});
		#[cfg(test)]
		{
		        // If we see a transaction for which we registered outputs previously,
			// make sure the registered scriptpubkey at the expected index match
			// the actual transaction output one. We failed this case before #653.
			for tx in &txn_matched {
				if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
					for idx_and_script in outputs.iter() {
						assert!((idx_and_script.0 as usize) < tx.output.len());
						assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
					}
				}
			}
		}
		watch_outputs
	}

	pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
		where B::Target: BroadcasterInterface,
		      F::Target: FeeEstimator,
		      L::Target: Logger,
	{
		log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);

		//We may discard:
		//- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
		//- maturing spendable output has transaction paying us has been disconnected
		self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);

		self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);

		self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
	}

	fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
		&mut self,
		txid: &Txid,
		broadcaster: B,
		fee_estimator: F,
		logger: L,
	) where
		B::Target: BroadcasterInterface,
		F::Target: FeeEstimator,
		L::Target: Logger,
	{
		self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.txid != *txid);
		self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
	}

	/// Filters a block's `txdata` for transactions spending watched outputs or for any child
	/// transactions thereof.
	fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
		let mut matched_txn = HashSet::new();
		txdata.iter().filter(|&&(_, tx)| {
			let mut matches = self.spends_watched_output(tx);
			for input in tx.input.iter() {
				if matches { break; }
				if matched_txn.contains(&input.previous_output.txid) {
					matches = true;
				}
			}
			if matches {
				matched_txn.insert(tx.txid());
			}
			matches
		}).map(|(_, tx)| *tx).collect()
	}

	/// Checks if a given transaction spends any watched outputs.
	fn spends_watched_output(&self, tx: &Transaction) -> bool {
		for input in tx.input.iter() {
			if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
				for (idx, _script_pubkey) in outputs.iter() {
					if *idx == input.previous_output.vout {
						#[cfg(test)]
						{
						        // If the expected script is a known type, check that the witness
						        // appears to be spending the correct type (ie that the match would
						        // actually succeed in BIP 158/159-style filters).
						        if _script_pubkey.is_v0_p2wsh() {
						                assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().clone()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
						        } else if _script_pubkey.is_v0_p2wpkh() {
						                assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
						        } else { panic!(); }
						}
						return true;
					}
				}
			}
		}

		false
	}

	fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
		// We need to consider all HTLCs which are:
		//  * in any unrevoked counterparty commitment transaction, as they could broadcast said
		//    transactions and we'd end up in a race, or
		//  * are in our latest holder commitment transaction, as this is the thing we will
		//    broadcast if we go on-chain.
		// Note that we consider HTLCs which were below dust threshold here - while they don't
		// strictly imply that we need to fail the channel, we need to go ahead and fail them back
		// to the source, and if we don't fail the channel we will have to ensure that the next
		// updates that peer sends us are update_fails, failing the channel if not. It's probably
		// easier to just fail the channel as this case should be rare enough anyway.
		let height = self.best_block.height();
		macro_rules! scan_commitment {
			($htlcs: expr, $holder_tx: expr) => {
				for ref htlc in $htlcs {
					// For inbound HTLCs which we know the preimage for, we have to ensure we hit the
					// chain with enough room to claim the HTLC without our counterparty being able to
					// time out the HTLC first.
					// For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
					// concern is being able to claim the corresponding inbound HTLC (on another
					// channel) before it expires. In fact, we don't even really care if our
					// counterparty here claims such an outbound HTLC after it expired as long as we
					// can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
					// chain when our counterparty is waiting for expiration to off-chain fail an HTLC
					// we give ourselves a few blocks of headroom after expiration before going
					// on-chain for an expired HTLC.
					// Note that, to avoid a potential attack whereby a node delays claiming an HTLC
					// from us until we've reached the point where we go on-chain with the
					// corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
					// least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
					//  aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
					//      inbound_cltv == height + CLTV_CLAIM_BUFFER
					//      outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
					//      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
					//      CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
					//      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
					//  The final, above, condition is checked for statically in channelmanager
					//  with CHECK_CLTV_EXPIRY_SANITY_2.
					let htlc_outbound = $holder_tx == htlc.offered;
					if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
					   (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
						log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
						return true;
					}
				}
			}
		}

		scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);

		if let Some(ref txid) = self.current_counterparty_commitment_txid {
			if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
				scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
			}
		}
		if let Some(ref txid) = self.prev_counterparty_commitment_txid {
			if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
				scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
			}
		}

		false
	}

	/// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
	/// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
	fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
		'outer_loop: for input in &tx.input {
			let mut payment_data = None;
			let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33)
				|| (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33);
			let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC);
			let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC);

			macro_rules! log_claim {
				($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
					// We found the output in question, but aren't failing it backwards
					// as we have no corresponding source and no valid counterparty commitment txid
					// to try a weak source binding with same-hash, same-value still-valid offered HTLC.
					// This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
					let outbound_htlc = $holder_tx == $htlc.offered;
					if ($holder_tx && revocation_sig_claim) ||
							(outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
						log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
							$tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
							if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
							if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
					} else {
						log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
							$tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
							if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
							if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
					}
				}
			}

			macro_rules! check_htlc_valid_counterparty {
				($counterparty_txid: expr, $htlc_output: expr) => {
					if let Some(txid) = $counterparty_txid {
						for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
							if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
								if let &Some(ref source) = pending_source {
									log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
									payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
									break;
								}
							}
						}
					}
				}
			}

			macro_rules! scan_commitment {
				($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
					for (ref htlc_output, source_option) in $htlcs {
						if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
							if let Some(ref source) = source_option {
								log_claim!($tx_info, $holder_tx, htlc_output, true);
								// We have a resolution of an HTLC either from one of our latest
								// holder commitment transactions or an unrevoked counterparty commitment
								// transaction. This implies we either learned a preimage, the HTLC
								// has timed out, or we screwed up. In any case, we should now
								// resolve the source HTLC with the original sender.
								payment_data = Some(((*source).clone(), htlc_output.payment_hash));
							} else if !$holder_tx {
									check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
								if payment_data.is_none() {
									check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
								}
							}
							if payment_data.is_none() {
								log_claim!($tx_info, $holder_tx, htlc_output, false);
								continue 'outer_loop;
							}
						}
					}
				}
			}

			if input.previous_output.txid == self.current_holder_commitment_tx.txid {
				scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
					"our latest holder commitment tx", true);
			}
			if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
				if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
					scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
						"our previous holder commitment tx", true);
				}
			}
			if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
				scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
					"counterparty commitment tx", false);
			}

			// Check that scan_commitment, above, decided there is some source worth relaying an
			// HTLC resolution backwards to and figure out whether we learned a preimage from it.
			if let Some((source, payment_hash)) = payment_data {
				let mut payment_preimage = PaymentPreimage([0; 32]);
				if accepted_preimage_claim {
					if !self.pending_monitor_events.iter().any(
						|update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
						payment_preimage.0.copy_from_slice(&input.witness[3]);
						self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
							source,
							payment_preimage: Some(payment_preimage),
							payment_hash
						}));
					}
				} else if offered_preimage_claim {
					if !self.pending_monitor_events.iter().any(
						|update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
							upd.source == source
						} else { false }) {
						payment_preimage.0.copy_from_slice(&input.witness[1]);
						self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
							source,
							payment_preimage: Some(payment_preimage),
							payment_hash
						}));
					}
				} else {
					self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
						if entry.height != height { return true; }
						match entry.event {
							OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
								*htlc_source != source
							},
							_ => true,
						}
					});
					let entry = OnchainEventEntry {
						txid: tx.txid(),
						height,
						event: OnchainEvent::HTLCUpdate { source: source, payment_hash: payment_hash },
					};
					log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
					self.onchain_events_awaiting_threshold_conf.push(entry);
				}
			}
		}
	}

	/// Check if any transaction broadcasted is paying fund back to some address we can assume to own
	fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
		let mut spendable_output = None;
		for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
			if i > ::core::u16::MAX as usize {
				// While it is possible that an output exists on chain which is greater than the
				// 2^16th output in a given transaction, this is only possible if the output is not
				// in a lightning transaction and was instead placed there by some third party who
				// wishes to give us money for no reason.
				// Namely, any lightning transactions which we pre-sign will never have anywhere
				// near 2^16 outputs both because such transactions must have ~2^16 outputs who's
				// scripts are not longer than one byte in length and because they are inherently
				// non-standard due to their size.
				// Thus, it is completely safe to ignore such outputs, and while it may result in
				// us ignoring non-lightning fund to us, that is only possible if someone fills
				// nearly a full block with garbage just to hit this case.
				continue;
			}
			if outp.script_pubkey == self.destination_script {
				spendable_output =  Some(SpendableOutputDescriptor::StaticOutput {
					outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
					output: outp.clone(),
				});
				break;
			} else if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
				if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
					spendable_output =  Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
						outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
						per_commitment_point: broadcasted_holder_revokable_script.1,
						to_self_delay: self.on_holder_tx_csv,
						output: outp.clone(),
						revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
						channel_keys_id: self.channel_keys_id,
						channel_value_satoshis: self.channel_value_satoshis,
					}));
					break;
				}
			} else if self.counterparty_payment_script == outp.script_pubkey {
				spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
					outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
					output: outp.clone(),
					channel_keys_id: self.channel_keys_id,
					channel_value_satoshis: self.channel_value_satoshis,
				}));
				break;
			} else if outp.script_pubkey == self.shutdown_script {
				spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
					outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
					output: outp.clone(),
				});
			}
		}
		if let Some(spendable_output) = spendable_output {
			let entry = OnchainEventEntry {
				txid: tx.txid(),
				height: height,
				event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
			};
			log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
			self.onchain_events_awaiting_threshold_conf.push(entry);
		}
	}
}

/// `Persist` defines behavior for persisting channel monitors: this could mean
/// writing once to disk, and/or uploading to one or more backup services.
///
/// Note that for every new monitor, you **must** persist the new `ChannelMonitor`
/// to disk/backups. And, on every update, you **must** persist either the
/// `ChannelMonitorUpdate` or the updated monitor itself. Otherwise, there is risk
/// of situations such as revoking a transaction, then crashing before this
/// revocation can be persisted, then unintentionally broadcasting a revoked
/// transaction and losing money. This is a risk because previous channel states
/// are toxic, so it's important that whatever channel state is persisted is
/// kept up-to-date.
pub trait Persist<ChannelSigner: Sign> {
	/// Persist a new channel's data. The data can be stored any way you want, but
	/// the identifier provided by Rust-Lightning is the channel's outpoint (and
	/// it is up to you to maintain a correct mapping between the outpoint and the
	/// stored channel data). Note that you **must** persist every new monitor to
	/// disk. See the `Persist` trait documentation for more details.
	///
	/// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
	/// and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
	fn persist_new_channel(&self, id: OutPoint, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;

	/// Update one channel's data. The provided `ChannelMonitor` has already
	/// applied the given update.
	///
	/// Note that on every update, you **must** persist either the
	/// `ChannelMonitorUpdate` or the updated monitor itself to disk/backups. See
	/// the `Persist` trait documentation for more details.
	///
	/// If an implementer chooses to persist the updates only, they need to make
	/// sure that all the updates are applied to the `ChannelMonitors` *before*
	/// the set of channel monitors is given to the `ChannelManager`
	/// deserialization routine. See [`ChannelMonitor::update_monitor`] for
	/// applying a monitor update to a monitor. If full `ChannelMonitors` are
	/// persisted, then there is no need to persist individual updates.
	///
	/// Note that there could be a performance tradeoff between persisting complete
	/// channel monitors on every update vs. persisting only updates and applying
	/// them in batches. The size of each monitor grows `O(number of state updates)`
	/// whereas updates are small and `O(1)`.
	///
	/// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
	/// [`ChannelMonitorUpdate::write`] for writing out an update, and
	/// [`ChannelMonitorUpdateErr`] for requirements when returning errors.
	fn update_persisted_channel(&self, id: OutPoint, update: &ChannelMonitorUpdate, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
}

impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
where
	T::Target: BroadcasterInterface,
	F::Target: FeeEstimator,
	L::Target: Logger,
{
	fn block_connected(&self, block: &Block, height: u32) {
		let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
		self.0.block_connected(&block.header, &txdata, height, &*self.1, &*self.2, &*self.3);
	}

	fn block_disconnected(&self, header: &BlockHeader, height: u32) {
		self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
	}
}

impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
where
	T::Target: BroadcasterInterface,
	F::Target: FeeEstimator,
	L::Target: Logger,
{
	fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
		self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
	}

	fn transaction_unconfirmed(&self, txid: &Txid) {
		self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
	}

	fn best_block_updated(&self, header: &BlockHeader, height: u32) {
		self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
	}

	fn get_relevant_txids(&self) -> Vec<Txid> {
		self.0.get_relevant_txids()
	}
}

const MAX_ALLOC_SIZE: usize = 64*1024;

impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
		for (BlockHash, ChannelMonitor<Signer>) {
	fn read<R: ::std::io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
		macro_rules! unwrap_obj {
			($key: expr) => {
				match $key {
					Ok(res) => res,
					Err(_) => return Err(DecodeError::InvalidValue),
				}
			}
		}

		let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);

		let latest_update_id: u64 = Readable::read(reader)?;
		let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;

		let destination_script = Readable::read(reader)?;
		let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
			0 => {
				let revokable_address = Readable::read(reader)?;
				let per_commitment_point = Readable::read(reader)?;
				let revokable_script = Readable::read(reader)?;
				Some((revokable_address, per_commitment_point, revokable_script))
			},
			1 => { None },
			_ => return Err(DecodeError::InvalidValue),
		};
		let counterparty_payment_script = Readable::read(reader)?;
		let shutdown_script = Readable::read(reader)?;

		let channel_keys_id = Readable::read(reader)?;
		let holder_revocation_basepoint = Readable::read(reader)?;
		// Technically this can fail and serialize fail a round-trip, but only for serialization of
		// barely-init'd ChannelMonitors that we can't do anything with.
		let outpoint = OutPoint {
			txid: Readable::read(reader)?,
			index: Readable::read(reader)?,
		};
		let funding_info = (outpoint, Readable::read(reader)?);
		let current_counterparty_commitment_txid = Readable::read(reader)?;
		let prev_counterparty_commitment_txid = Readable::read(reader)?;

		let counterparty_tx_cache = Readable::read(reader)?;
		let funding_redeemscript = Readable::read(reader)?;
		let channel_value_satoshis = Readable::read(reader)?;

		let their_cur_revocation_points = {
			let first_idx = <U48 as Readable>::read(reader)?.0;
			if first_idx == 0 {
				None
			} else {
				let first_point = Readable::read(reader)?;
				let second_point_slice: [u8; 33] = Readable::read(reader)?;
				if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
					Some((first_idx, first_point, None))
				} else {
					Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
				}
			}
		};

		let on_holder_tx_csv: u16 = Readable::read(reader)?;

		let commitment_secrets = Readable::read(reader)?;

		macro_rules! read_htlc_in_commitment {
			() => {
				{
					let offered: bool = Readable::read(reader)?;
					let amount_msat: u64 = Readable::read(reader)?;
					let cltv_expiry: u32 = Readable::read(reader)?;
					let payment_hash: PaymentHash = Readable::read(reader)?;
					let transaction_output_index: Option<u32> = Readable::read(reader)?;

					HTLCOutputInCommitment {
						offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
					}
				}
			}
		}

		let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
		let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
		for _ in 0..counterparty_claimable_outpoints_len {
			let txid: Txid = Readable::read(reader)?;
			let htlcs_count: u64 = Readable::read(reader)?;
			let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
			for _ in 0..htlcs_count {
				htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
			}
			if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
				return Err(DecodeError::InvalidValue);
			}
		}

		let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
		let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
		for _ in 0..counterparty_commitment_txn_on_chain_len {
			let txid: Txid = Readable::read(reader)?;
			let commitment_number = <U48 as Readable>::read(reader)?.0;
			if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
				return Err(DecodeError::InvalidValue);
			}
		}

		let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
		let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
		for _ in 0..counterparty_hash_commitment_number_len {
			let payment_hash: PaymentHash = Readable::read(reader)?;
			let commitment_number = <U48 as Readable>::read(reader)?.0;
			if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
				return Err(DecodeError::InvalidValue);
			}
		}

		let prev_holder_signed_commitment_tx = match <u8 as Readable>::read(reader)? {
			0 => None,
			1 => {
				Some(Readable::read(reader)?)
			},
			_ => return Err(DecodeError::InvalidValue),
		};
		let current_holder_commitment_tx = Readable::read(reader)?;

		let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
		let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;

		let payment_preimages_len: u64 = Readable::read(reader)?;
		let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
		for _ in 0..payment_preimages_len {
			let preimage: PaymentPreimage = Readable::read(reader)?;
			let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
			if let Some(_) = payment_preimages.insert(hash, preimage) {
				return Err(DecodeError::InvalidValue);
			}
		}

		let pending_monitor_events_len: u64 = Readable::read(reader)?;
		let mut pending_monitor_events = Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3)));
		for _ in 0..pending_monitor_events_len {
			let ev = match <u8 as Readable>::read(reader)? {
				0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
				1 => MonitorEvent::CommitmentTxBroadcasted(funding_info.0),
				_ => return Err(DecodeError::InvalidValue)
			};
			pending_monitor_events.push(ev);
		}

		let pending_events_len: u64 = Readable::read(reader)?;
		let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
		for _ in 0..pending_events_len {
			if let Some(event) = MaybeReadable::read(reader)? {
				pending_events.push(event);
			}
		}

		let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);

		let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
		let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
		for _ in 0..waiting_threshold_conf_len {
			onchain_events_awaiting_threshold_conf.push(Readable::read(reader)?);
		}

		let outputs_to_watch_len: u64 = Readable::read(reader)?;
		let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
		for _ in 0..outputs_to_watch_len {
			let txid = Readable::read(reader)?;
			let outputs_len: u64 = Readable::read(reader)?;
			let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
			for _ in 0..outputs_len {
				outputs.push((Readable::read(reader)?, Readable::read(reader)?));
			}
			if let Some(_) = outputs_to_watch.insert(txid, outputs) {
				return Err(DecodeError::InvalidValue);
			}
		}
		let onchain_tx_handler = ReadableArgs::read(reader, keys_manager)?;

		let lockdown_from_offchain = Readable::read(reader)?;
		let holder_tx_signed = Readable::read(reader)?;

		read_tlv_fields!(reader, {});

		let mut secp_ctx = Secp256k1::new();
		secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());

		Ok((best_block.block_hash(), ChannelMonitor {
			inner: Mutex::new(ChannelMonitorImpl {
				latest_update_id,
				commitment_transaction_number_obscure_factor,

				destination_script,
				broadcasted_holder_revokable_script,
				counterparty_payment_script,
				shutdown_script,

				channel_keys_id,
				holder_revocation_basepoint,
				funding_info,
				current_counterparty_commitment_txid,
				prev_counterparty_commitment_txid,

				counterparty_tx_cache,
				funding_redeemscript,
				channel_value_satoshis,
				their_cur_revocation_points,

				on_holder_tx_csv,

				commitment_secrets,
				counterparty_claimable_outpoints,
				counterparty_commitment_txn_on_chain,
				counterparty_hash_commitment_number,

				prev_holder_signed_commitment_tx,
				current_holder_commitment_tx,
				current_counterparty_commitment_number,
				current_holder_commitment_number,

				payment_preimages,
				pending_monitor_events,
				pending_events,

				onchain_events_awaiting_threshold_conf,
				outputs_to_watch,

				onchain_tx_handler,

				lockdown_from_offchain,
				holder_tx_signed,

				best_block,

				secp_ctx,
			}),
		}))
	}
}

#[cfg(test)]
mod tests {
	use bitcoin::blockdata::script::{Script, Builder};
	use bitcoin::blockdata::opcodes;
	use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
	use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
	use bitcoin::util::bip143;
	use bitcoin::hashes::Hash;
	use bitcoin::hashes::sha256::Hash as Sha256;
	use bitcoin::hashes::hex::FromHex;
	use bitcoin::hash_types::Txid;
	use bitcoin::network::constants::Network;
	use hex;
	use chain::BestBlock;
	use chain::channelmonitor::ChannelMonitor;
	use chain::package::{WEIGHT_OFFERED_HTLC, WEIGHT_RECEIVED_HTLC, WEIGHT_REVOKED_OFFERED_HTLC, WEIGHT_REVOKED_RECEIVED_HTLC, WEIGHT_REVOKED_OUTPUT};
	use chain::transaction::OutPoint;
	use ln::{PaymentPreimage, PaymentHash};
	use ln::chan_utils;
	use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
	use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
	use bitcoin::secp256k1::key::{SecretKey,PublicKey};
	use bitcoin::secp256k1::Secp256k1;
	use std::sync::{Arc, Mutex};
	use chain::keysinterface::InMemorySigner;
	use prelude::*;

	#[test]
	fn test_prune_preimages() {
		let secp_ctx = Secp256k1::new();
		let logger = Arc::new(TestLogger::new());
		let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))});
		let fee_estimator = Arc::new(TestFeeEstimator { sat_per_kw: Mutex::new(253) });

		let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
		let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };

		let mut preimages = Vec::new();
		{
			for i in 0..20 {
				let preimage = PaymentPreimage([i; 32]);
				let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
				preimages.push((preimage, hash));
			}
		}

		macro_rules! preimages_slice_to_htlc_outputs {
			($preimages_slice: expr) => {
				{
					let mut res = Vec::new();
					for (idx, preimage) in $preimages_slice.iter().enumerate() {
						res.push((HTLCOutputInCommitment {
							offered: true,
							amount_msat: 0,
							cltv_expiry: 0,
							payment_hash: preimage.1.clone(),
							transaction_output_index: Some(idx as u32),
						}, None));
					}
					res
				}
			}
		}
		macro_rules! preimages_to_holder_htlcs {
			($preimages_slice: expr) => {
				{
					let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
					let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
					res
				}
			}
		}

		macro_rules! test_preimages_exist {
			($preimages_slice: expr, $monitor: expr) => {
				for preimage in $preimages_slice {
					assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
				}
			}
		}

		let keys = InMemorySigner::new(
			&secp_ctx,
			SecretKey::from_slice(&[41; 32]).unwrap(),
			SecretKey::from_slice(&[41; 32]).unwrap(),
			SecretKey::from_slice(&[41; 32]).unwrap(),
			SecretKey::from_slice(&[41; 32]).unwrap(),
			SecretKey::from_slice(&[41; 32]).unwrap(),
			[41; 32],
			0,
			[0; 32]
		);

		let counterparty_pubkeys = ChannelPublicKeys {
			funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
			revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
			payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
			delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
			htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
		};
		let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
		let channel_parameters = ChannelTransactionParameters {
			holder_pubkeys: keys.holder_channel_pubkeys.clone(),
			holder_selected_contest_delay: 66,
			is_outbound_from_holder: true,
			counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
				pubkeys: counterparty_pubkeys,
				selected_contest_delay: 67,
			}),
			funding_outpoint: Some(funding_outpoint),
		};
		// Prune with one old state and a holder commitment tx holding a few overlaps with the
		// old state.
		let best_block = BestBlock::from_genesis(Network::Testnet);
		let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
		                                  &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()), 0, &Script::new(),
		                                  (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
		                                  &channel_parameters,
		                                  Script::new(), 46, 0,
		                                  HolderCommitmentTransaction::dummy(), best_block);

		monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
		let dummy_txid = dummy_tx.txid();
		monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
		monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
		monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
		monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
		for &(ref preimage, ref hash) in preimages.iter() {
			monitor.provide_payment_preimage(hash, preimage, &broadcaster, &fee_estimator, &logger);
		}

		// Now provide a secret, pruning preimages 10-15
		let mut secret = [0; 32];
		secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
		monitor.provide_secret(281474976710655, secret.clone()).unwrap();
		assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
		test_preimages_exist!(&preimages[0..10], monitor);
		test_preimages_exist!(&preimages[15..20], monitor);

		// Now provide a further secret, pruning preimages 15-17
		secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
		monitor.provide_secret(281474976710654, secret.clone()).unwrap();
		assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
		test_preimages_exist!(&preimages[0..10], monitor);
		test_preimages_exist!(&preimages[17..20], monitor);

		// Now update holder commitment tx info, pruning only element 18 as we still care about the
		// previous commitment tx's preimages too
		monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
		secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
		monitor.provide_secret(281474976710653, secret.clone()).unwrap();
		assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
		test_preimages_exist!(&preimages[0..10], monitor);
		test_preimages_exist!(&preimages[18..20], monitor);

		// But if we do it again, we'll prune 5-10
		monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
		secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
		monitor.provide_secret(281474976710652, secret.clone()).unwrap();
		assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
		test_preimages_exist!(&preimages[0..5], monitor);
	}

	#[test]
	fn test_claim_txn_weight_computation() {
		// We test Claim txn weight, knowing that we want expected weigth and
		// not actual case to avoid sigs and time-lock delays hell variances.

		let secp_ctx = Secp256k1::new();
		let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
		let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
		let mut sum_actual_sigs = 0;

		macro_rules! sign_input {
			($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr) => {
				let htlc = HTLCOutputInCommitment {
					offered: if *$weight == WEIGHT_REVOKED_OFFERED_HTLC || *$weight == WEIGHT_OFFERED_HTLC { true } else { false },
					amount_msat: 0,
					cltv_expiry: 2 << 16,
					payment_hash: PaymentHash([1; 32]),
					transaction_output_index: Some($idx as u32),
				};
				let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
				let sighash = hash_to_message!(&$sighash_parts.signature_hash($idx, &redeem_script, $amount, SigHashType::All)[..]);
				let sig = secp_ctx.sign(&sighash, &privkey);
				$sighash_parts.access_witness($idx).push(sig.serialize_der().to_vec());
				$sighash_parts.access_witness($idx)[0].push(SigHashType::All as u8);
				sum_actual_sigs += $sighash_parts.access_witness($idx)[0].len();
				if *$weight == WEIGHT_REVOKED_OUTPUT {
					$sighash_parts.access_witness($idx).push(vec!(1));
				} else if *$weight == WEIGHT_REVOKED_OFFERED_HTLC || *$weight == WEIGHT_REVOKED_RECEIVED_HTLC {
					$sighash_parts.access_witness($idx).push(pubkey.clone().serialize().to_vec());
				} else if *$weight == WEIGHT_RECEIVED_HTLC {
					$sighash_parts.access_witness($idx).push(vec![0]);
				} else {
					$sighash_parts.access_witness($idx).push(PaymentPreimage([1; 32]).0.to_vec());
				}
				$sighash_parts.access_witness($idx).push(redeem_script.into_bytes());
				println!("witness[0] {}", $sighash_parts.access_witness($idx)[0].len());
				println!("witness[1] {}", $sighash_parts.access_witness($idx)[1].len());
				println!("witness[2] {}", $sighash_parts.access_witness($idx)[2].len());
			}
		}

		let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
		let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();

		// Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
		let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
		for i in 0..4 {
			claim_tx.input.push(TxIn {
				previous_output: BitcoinOutPoint {
					txid,
					vout: i,
				},
				script_sig: Script::new(),
				sequence: 0xfffffffd,
				witness: Vec::new(),
			});
		}
		claim_tx.output.push(TxOut {
			script_pubkey: script_pubkey.clone(),
			value: 0,
		});
		let base_weight = claim_tx.get_weight();
		let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, WEIGHT_REVOKED_OFFERED_HTLC, WEIGHT_REVOKED_OFFERED_HTLC, WEIGHT_REVOKED_RECEIVED_HTLC];
		let mut inputs_total_weight = 2; // count segwit flags
		{
			let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
			for (idx, inp) in inputs_weight.iter().enumerate() {
				sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
				inputs_total_weight += inp;
			}
		}
		assert_eq!(base_weight + inputs_total_weight as usize,  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));

		// Claim tx with 1 offered HTLCs, 3 received HTLCs
		claim_tx.input.clear();
		sum_actual_sigs = 0;
		for i in 0..4 {
			claim_tx.input.push(TxIn {
				previous_output: BitcoinOutPoint {
					txid,
					vout: i,
				},
				script_sig: Script::new(),
				sequence: 0xfffffffd,
				witness: Vec::new(),
			});
		}
		let base_weight = claim_tx.get_weight();
		let inputs_weight = vec![WEIGHT_OFFERED_HTLC, WEIGHT_RECEIVED_HTLC, WEIGHT_RECEIVED_HTLC, WEIGHT_RECEIVED_HTLC];
		let mut inputs_total_weight = 2; // count segwit flags
		{
			let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
			for (idx, inp) in inputs_weight.iter().enumerate() {
				sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
				inputs_total_weight += inp;
			}
		}
		assert_eq!(base_weight + inputs_total_weight as usize,  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));

		// Justice tx with 1 revoked HTLC-Success tx output
		claim_tx.input.clear();
		sum_actual_sigs = 0;
		claim_tx.input.push(TxIn {
			previous_output: BitcoinOutPoint {
				txid,
				vout: 0,
			},
			script_sig: Script::new(),
			sequence: 0xfffffffd,
			witness: Vec::new(),
		});
		let base_weight = claim_tx.get_weight();
		let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
		let mut inputs_total_weight = 2; // count segwit flags
		{
			let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
			for (idx, inp) in inputs_weight.iter().enumerate() {
				sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
				inputs_total_weight += inp;
			}
		}
		assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
	}

	// Further testing is done in the ChannelManager integration tests.
}