1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! keysinterface provides keys into rust-lightning and defines some useful enums which describe
//! spendable on-chain outputs which the user owns and is responsible for using just as any other
//! on-chain output which is theirs.

use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
use bitcoin::util::bip143;

use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::HashEngine as Sha256State;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::WPubkeyHash;

use bitcoin::secp256k1::key::{SecretKey, PublicKey};
use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
use bitcoin::secp256k1::recovery::RecoverableSignature;
use bitcoin::secp256k1;

use util::{byte_utils, transaction_utils};
use util::ser::{Writeable, Writer, Readable};

use chain::transaction::OutPoint;
use ln::chan_utils;
use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
use ln::msgs::UnsignedChannelAnnouncement;

use prelude::*;
use std::collections::HashSet;
use core::sync::atomic::{AtomicUsize, Ordering};
use std::io::Error;
use ln::msgs::{DecodeError, MAX_VALUE_MSAT};

/// Information about a spendable output to a P2WSH script. See
/// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
#[derive(Clone, Debug, PartialEq)]
pub struct DelayedPaymentOutputDescriptor {
	/// The outpoint which is spendable
	pub outpoint: OutPoint,
	/// Per commitment point to derive delayed_payment_key by key holder
	pub per_commitment_point: PublicKey,
	/// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
	/// the witness_script.
	pub to_self_delay: u16,
	/// The output which is referenced by the given outpoint
	pub output: TxOut,
	/// The revocation point specific to the commitment transaction which was broadcast. Used to
	/// derive the witnessScript for this output.
	pub revocation_pubkey: PublicKey,
	/// Arbitrary identification information returned by a call to
	/// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
	/// the channel to spend the output.
	pub channel_keys_id: [u8; 32],
	/// The value of the channel which this output originated from, possibly indirectly.
	pub channel_value_satoshis: u64,
}
impl DelayedPaymentOutputDescriptor {
	/// The maximum length a well-formed witness spending one of these should have.
	// Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
	// redeemscript push length.
	pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
}

impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
	(0, outpoint),
	(2, per_commitment_point),
	(4, to_self_delay),
	(6, output),
	(8, revocation_pubkey),
	(10, channel_keys_id),
	(12, channel_value_satoshis),
}, {}, {});

/// Information about a spendable output to our "payment key". See
/// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
#[derive(Clone, Debug, PartialEq)]
pub struct StaticPaymentOutputDescriptor {
	/// The outpoint which is spendable
	pub outpoint: OutPoint,
	/// The output which is referenced by the given outpoint
	pub output: TxOut,
	/// Arbitrary identification information returned by a call to
	/// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
	/// the channel to spend the output.
	pub channel_keys_id: [u8; 32],
	/// The value of the channel which this transactions spends.
	pub channel_value_satoshis: u64,
}
impl StaticPaymentOutputDescriptor {
	/// The maximum length a well-formed witness spending one of these should have.
	// Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
	// redeemscript push length.
	pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
}
impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
	(0, outpoint),
	(2, output),
	(4, channel_keys_id),
	(6, channel_value_satoshis),
}, {}, {});

/// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
/// claim at any point in the future) an event is generated which you must track and be able to
/// spend on-chain. The information needed to do this is provided in this enum, including the
/// outpoint describing which txid and output index is available, the full output which exists at
/// that txid/index, and any keys or other information required to sign.
#[derive(Clone, Debug, PartialEq)]
pub enum SpendableOutputDescriptor {
	/// An output to a script which was provided via KeysInterface directly, either from
	/// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
	/// spend it. No secret keys are provided as rust-lightning was never given any key.
	/// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
	/// on-chain using the payment preimage or after it has timed out.
	StaticOutput {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The output which is referenced by the given outpoint.
		output: TxOut,
	},
	/// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
	///
	/// The witness in the spending input should be:
	/// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
	///
	/// Note that the nSequence field in the spending input must be set to to_self_delay
	/// (which means the transaction is not broadcastable until at least to_self_delay
	/// blocks after the outpoint confirms).
	///
	/// These are generally the result of a "revocable" output to us, spendable only by us unless
	/// it is an output from an old state which we broadcast (which should never happen).
	///
	/// To derive the delayed_payment key which is used to sign for this input, you must pass the
	/// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
	/// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
	/// chan_utils::derive_private_key. The public key can be generated without the secret key
	/// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
	/// Sign::pubkeys().
	///
	/// To derive the revocation_pubkey provided here (which is used in the witness
	/// script generation), you must pass the counterparty revocation_basepoint (which appears in the
	/// call to Sign::ready_channel) and the provided per_commitment point
	/// to chan_utils::derive_public_revocation_key.
	///
	/// The witness script which is hashed and included in the output script_pubkey may be
	/// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
	/// (derived as above), and the to_self_delay contained here to
	/// chan_utils::get_revokeable_redeemscript.
	DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
	/// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
	/// corresponds to the public key in Sign::pubkeys().payment_point).
	/// The witness in the spending input, is, thus, simply:
	/// <BIP 143 signature> <payment key>
	///
	/// These are generally the result of our counterparty having broadcast the current state,
	/// allowing us to claim the non-HTLC-encumbered outputs immediately.
	StaticPaymentOutput(StaticPaymentOutputDescriptor),
}

impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
	(0, StaticOutput) => {
		(0, outpoint),
		(2, output),
	}, {}, {},
;
	(1, DelayedPaymentOutput),
	(2, StaticPaymentOutput),
);

/// A trait to sign lightning channel transactions as described in BOLT 3.
///
/// Signing services could be implemented on a hardware wallet. In this case,
/// the current Sign would be a front-end on top of a communication
/// channel connected to your secure device and lightning key material wouldn't
/// reside on a hot server. Nevertheless, a this deployment would still need
/// to trust the ChannelManager to avoid loss of funds as this latest component
/// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
///
/// A more secure iteration would be to use hashlock (or payment points) to pair
/// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
/// at the price of more state and computation on the hardware wallet side. In the future,
/// we are looking forward to design such interface.
///
/// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
/// to act, as liveness and breach reply correctness are always going to be hard requirements
/// of LN security model, orthogonal of key management issues.
// TODO: We should remove Clone by instead requesting a new Sign copy when we create
// ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
pub trait BaseSign {
	/// Gets the per-commitment point for a specific commitment number
	///
	/// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
	fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
	/// Gets the commitment secret for a specific commitment number as part of the revocation process
	///
	/// An external signer implementation should error here if the commitment was already signed
	/// and should refuse to sign it in the future.
	///
	/// May be called more than once for the same index.
	///
	/// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
	// TODO: return a Result so we can signal a validation error
	fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
	/// Gets the holder's channel public keys and basepoints
	fn pubkeys(&self) -> &ChannelPublicKeys;
	/// Gets an arbitrary identifier describing the set of keys which are provided back to you in
	/// some SpendableOutputDescriptor types. This should be sufficient to identify this
	/// Sign object uniquely and lookup or re-derive its keys.
	fn channel_keys_id(&self) -> [u8; 32];

	/// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
	///
	/// Note that if signing fails or is rejected, the channel will be force-closed.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
	/// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
	/// latest commitment_tx when we initiate a force-close.
	/// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
	/// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
	/// the latest.
	/// This may be called multiple times for the same transaction.
	///
	/// An external signer implementation should check that the commitment has not been revoked.
	///
	/// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	// TODO: Key derivation failure should panic rather than Err
	fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
	/// transactions which will be broadcasted later, after the channel has moved on to a newer
	/// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
	/// get called once.
	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Create a signature for the given input in a transaction spending an HTLC transaction output
	/// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiple outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiple times for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// per_commitment_key is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder revocation_secret to do
	/// so).
	fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Create a signature for the given input in a transaction spending a commitment transaction
	/// HTLC output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiple outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiple times for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// per_commitment_key is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder revocation_secret to do
	/// so).
	///
	/// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
	/// (which is committed to in the BIP 143 signatures).
	fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
	/// transaction, either offered or received.
	///
	/// Such a transaction may claim multiples offered outputs at same time if we know the
	/// preimage for each when we create it, but only the input at index `input` should be
	/// signed for here. It may be called multiple times for same output(s) if a fee-bump is
	/// needed with regards to an upcoming timelock expiration.
	///
	/// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
	/// outputs.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// Per_commitment_point is the dynamic point corresponding to the channel state
	/// detected onchain. It has been generated by our counterparty and is used to derive
	/// channel state keys, which are then included in the witness script and committed to in the
	/// BIP 143 signature.
	fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Create a signature for a (proposed) closing transaction.
	///
	/// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
	/// chosen to forgo their output as dust.
	fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Signs a channel announcement message with our funding key, proving it comes from one
	/// of the channel participants.
	///
	/// Note that if this fails or is rejected, the channel will not be publicly announced and
	/// our counterparty may (though likely will not) close the channel on us for violating the
	/// protocol.
	fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Set the counterparty static channel data, including basepoints,
	/// counterparty_selected/holder_selected_contest_delay and funding outpoint.
	/// This is done as soon as the funding outpoint is known.  Since these are static channel data,
	/// they MUST NOT be allowed to change to different values once set.
	///
	/// channel_parameters.is_populated() MUST be true.
	///
	/// We bind holder_selected_contest_delay late here for API convenience.
	///
	/// Will be called before any signatures are applied.
	fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
}

/// A cloneable signer.
///
/// Although we require signers to be cloneable, it may be useful for developers to be able to use
/// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
/// which implies Sized, into this derived trait.
pub trait Sign: BaseSign + Writeable + Clone {
}

/// A trait to describe an object which can get user secrets and key material.
pub trait KeysInterface {
	/// A type which implements Sign which will be returned by get_channel_signer.
	type Signer : Sign;

	/// Get node secret key (aka node_id or network_key).
	///
	/// This method must return the same value each time it is called.
	fn get_node_secret(&self) -> SecretKey;
	/// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
	///
	/// This method should return a different value each time it is called, to avoid linking
	/// on-chain funds across channels as controlled to the same user.
	fn get_destination_script(&self) -> Script;
	/// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
	/// a channel.
	///
	/// This method should return a different value each time it is called, to avoid linking
	/// on-chain funds across channels as controlled to the same user.
	fn get_shutdown_pubkey(&self) -> PublicKey;
	/// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
	/// restarted with some stale data!
	///
	/// This method must return a different value each time it is called.
	fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
	/// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
	/// onion packets and for temporary channel IDs. There is no requirement that these be
	/// persisted anywhere, though they must be unique across restarts.
	///
	/// This method must return a different value each time it is called.
	fn get_secure_random_bytes(&self) -> [u8; 32];

	/// Reads a `Signer` for this `KeysInterface` from the given input stream.
	/// This is only called during deserialization of other objects which contain
	/// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
	/// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
	/// contain no versioning scheme. You may wish to include your own version prefix and ensure
	/// you've read all of the provided bytes to ensure no corruption occurred.
	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;

	/// Sign an invoice's preimage (note that this is the preimage of the invoice, not the HTLC's
	/// preimage). By parameterizing by the preimage instead of the hash, we allow implementors of
	/// this trait to parse the invoice and make sure they're signing what they expect, rather than
	/// blindly signing the hash.
	fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()>;
}

#[derive(Clone)]
/// A simple implementation of Sign that just keeps the private keys in memory.
///
/// This implementation performs no policy checks and is insufficient by itself as
/// a secure external signer.
pub struct InMemorySigner {
	/// Private key of anchor tx
	pub funding_key: SecretKey,
	/// Holder secret key for blinded revocation pubkey
	pub revocation_base_key: SecretKey,
	/// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
	pub payment_key: SecretKey,
	/// Holder secret key used in HTLC tx
	pub delayed_payment_base_key: SecretKey,
	/// Holder htlc secret key used in commitment tx htlc outputs
	pub htlc_base_key: SecretKey,
	/// Commitment seed
	pub commitment_seed: [u8; 32],
	/// Holder public keys and basepoints
	pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
	/// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
	channel_parameters: Option<ChannelTransactionParameters>,
	/// The total value of this channel
	channel_value_satoshis: u64,
	/// Key derivation parameters
	channel_keys_id: [u8; 32],
}

impl InMemorySigner {
	/// Create a new InMemorySigner
	pub fn new<C: Signing>(
		secp_ctx: &Secp256k1<C>,
		funding_key: SecretKey,
		revocation_base_key: SecretKey,
		payment_key: SecretKey,
		delayed_payment_base_key: SecretKey,
		htlc_base_key: SecretKey,
		commitment_seed: [u8; 32],
		channel_value_satoshis: u64,
		channel_keys_id: [u8; 32]) -> InMemorySigner {
		let holder_channel_pubkeys =
			InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		InMemorySigner {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			channel_parameters: None,
			channel_keys_id,
		}
	}

	fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
	                               funding_key: &SecretKey,
	                               revocation_base_key: &SecretKey,
	                               payment_key: &SecretKey,
	                               delayed_payment_base_key: &SecretKey,
	                               htlc_base_key: &SecretKey) -> ChannelPublicKeys {
		let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
		ChannelPublicKeys {
			funding_pubkey: from_secret(&funding_key),
			revocation_basepoint: from_secret(&revocation_base_key),
			payment_point: from_secret(&payment_key),
			delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
			htlc_basepoint: from_secret(&htlc_base_key),
		}
	}

	/// Counterparty pubkeys.
	/// Will panic if ready_channel wasn't called.
	pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }

	/// The contest_delay value specified by our counterparty and applied on holder-broadcastable
	/// transactions, ie the amount of time that we have to wait to recover our funds if we
	/// broadcast a transaction.
	/// Will panic if ready_channel wasn't called.
	pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }

	/// The contest_delay value specified by us and applied on transactions broadcastable
	/// by our counterparty, ie the amount of time that they have to wait to recover their funds
	/// if they broadcast a transaction.
	/// Will panic if ready_channel wasn't called.
	pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }

	/// Whether the holder is the initiator
	/// Will panic if ready_channel wasn't called.
	pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }

	/// Funding outpoint
	/// Will panic if ready_channel wasn't called.
	pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }

	/// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
	/// building transactions.
	///
	/// Will panic if ready_channel wasn't called.
	pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
		self.channel_parameters.as_ref().unwrap()
	}

	/// Sign the single input of spend_tx at index `input_idx` which spends the output
	/// described by descriptor, returning the witness stack for the input.
	///
	/// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
	/// or is not spending the outpoint described by `descriptor.outpoint`.
	pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
		// TODO: We really should be taking the SigHashCache as a parameter here instead of
		// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
		// so that we can check them. This requires upstream rust-bitcoin changes (as well as
		// bindings updates to support SigHashCache objects).
		if spend_tx.input.len() <= input_idx { return Err(()); }
		if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
		if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }

		let remotepubkey = self.pubkeys().payment_point;
		let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
		let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
		let remotesig = secp_ctx.sign(&sighash, &self.payment_key);

		let mut witness = Vec::with_capacity(2);
		witness.push(remotesig.serialize_der().to_vec());
		witness[0].push(SigHashType::All as u8);
		witness.push(remotepubkey.serialize().to_vec());
		Ok(witness)
	}

	/// Sign the single input of spend_tx at index `input_idx` which spends the output
	/// described by descriptor, returning the witness stack for the input.
	///
	/// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
	/// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
	/// sequence set to `descriptor.to_self_delay`.
	pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
		// TODO: We really should be taking the SigHashCache as a parameter here instead of
		// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
		// so that we can check them. This requires upstream rust-bitcoin changes (as well as
		// bindings updates to support SigHashCache objects).
		if spend_tx.input.len() <= input_idx { return Err(()); }
		if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
		if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
		if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }

		let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
			.expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
		let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
		let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
		let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
		let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);

		let mut witness = Vec::with_capacity(3);
		witness.push(local_delayedsig.serialize_der().to_vec());
		witness[0].push(SigHashType::All as u8);
		witness.push(vec!()); //MINIMALIF
		witness.push(witness_script.clone().into_bytes());
		Ok(witness)
	}
}

impl BaseSign for InMemorySigner {
	fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
		let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
		PublicKey::from_secret_key(secp_ctx, &commitment_secret)
	}

	fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
		chan_utils::build_commitment_secret(&self.commitment_seed, idx)
	}

	fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
	fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }

	fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let trusted_tx = commitment_tx.trust();
		let keys = trusted_tx.keys();

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);

		let built_tx = trusted_tx.built_transaction();
		let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let commitment_txid = built_tx.txid;

		let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
		for htlc in commitment_tx.htlcs() {
			let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
			let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
			let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
			let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
			htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
		}

		Ok((commitment_sig, htlc_sigs))
	}

	fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		let trusted_tx = commitment_tx.trust();
		let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let channel_parameters = self.get_channel_parameters();
		let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
		Ok((sig, htlc_sigs))
	}

	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		let trusted_tx = commitment_tx.trust();
		let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let channel_parameters = self.get_channel_parameters();
		let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
		Ok((sig, htlc_sigs))
	}

	fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
		let witness_script = {
			let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
			chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
		};
		let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
		return Ok(secp_ctx.sign(&sighash, &revocation_key))
	}

	fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
		let witness_script = {
			let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
			let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
			chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
		};
		let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
		return Ok(secp_ctx.sign(&sighash, &revocation_key))
	}

	fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
			let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
				if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
					if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
						chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
					} else { return Err(()) }
				} else { return Err(()) }
			} else { return Err(()) };
			let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
			let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
			return Ok(secp_ctx.sign(&sighash, &htlc_key))
		}
		Err(())
	}

	fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		if closing_tx.input.len() != 1 { return Err(()); }
		if closing_tx.input[0].witness.len() != 0 { return Err(()); }
		if closing_tx.output.len() > 2 { return Err(()); }

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);

		let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
			.signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
		Ok(secp_ctx.sign(&sighash, &self.funding_key))
	}

	fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
		Ok(secp_ctx.sign(&msghash, &self.funding_key))
	}

	fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
		assert!(self.channel_parameters.is_none(), "Acceptance already noted");
		assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
		self.channel_parameters = Some(channel_parameters.clone());
	}
}

const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;

impl Sign for InMemorySigner {}

impl Writeable for InMemorySigner {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);

		self.funding_key.write(writer)?;
		self.revocation_base_key.write(writer)?;
		self.payment_key.write(writer)?;
		self.delayed_payment_base_key.write(writer)?;
		self.htlc_base_key.write(writer)?;
		self.commitment_seed.write(writer)?;
		self.channel_parameters.write(writer)?;
		self.channel_value_satoshis.write(writer)?;
		self.channel_keys_id.write(writer)?;

		write_tlv_fields!(writer, {}, {});

		Ok(())
	}
}

impl Readable for InMemorySigner {
	fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
		let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);

		let funding_key = Readable::read(reader)?;
		let revocation_base_key = Readable::read(reader)?;
		let payment_key = Readable::read(reader)?;
		let delayed_payment_base_key = Readable::read(reader)?;
		let htlc_base_key = Readable::read(reader)?;
		let commitment_seed = Readable::read(reader)?;
		let counterparty_channel_data = Readable::read(reader)?;
		let channel_value_satoshis = Readable::read(reader)?;
		let secp_ctx = Secp256k1::signing_only();
		let holder_channel_pubkeys =
			InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		let keys_id = Readable::read(reader)?;

		read_tlv_fields!(reader, {}, {});

		Ok(InMemorySigner {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			channel_parameters: counterparty_channel_data,
			channel_keys_id: keys_id,
		})
	}
}

/// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
/// and derives keys from that.
///
/// Your node_id is seed/0'
/// ChannelMonitor closes may use seed/1'
/// Cooperative closes may use seed/2'
/// The two close keys may be needed to claim on-chain funds!
pub struct KeysManager {
	secp_ctx: Secp256k1<secp256k1::All>,
	node_secret: SecretKey,
	destination_script: Script,
	shutdown_pubkey: PublicKey,
	channel_master_key: ExtendedPrivKey,
	channel_child_index: AtomicUsize,

	rand_bytes_master_key: ExtendedPrivKey,
	rand_bytes_child_index: AtomicUsize,
	rand_bytes_unique_start: Sha256State,

	seed: [u8; 32],
	starting_time_secs: u64,
	starting_time_nanos: u32,
}

impl KeysManager {
	/// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
	/// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
	/// starting_time isn't strictly required to actually be a time, but it must absolutely,
	/// without a doubt, be unique to this instance. ie if you start multiple times with the same
	/// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
	/// simply use the current time (with very high precision).
	///
	/// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
	/// obviously, starting_time should be unique every time you reload the library - it is only
	/// used to generate new ephemeral key data (which will be stored by the individual channel if
	/// necessary).
	///
	/// Note that the seed is required to recover certain on-chain funds independent of
	/// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
	/// channel, and some on-chain during-closing funds.
	///
	/// Note that until the 0.1 release there is no guarantee of backward compatibility between
	/// versions. Once the library is more fully supported, the docs will be updated to include a
	/// detailed description of the guarantee.
	pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
		let secp_ctx = Secp256k1::new();
		// Note that when we aren't serializing the key, network doesn't matter
		match ExtendedPrivKey::new_master(Network::Testnet, seed) {
			Ok(master_key) => {
				let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
				let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
					Ok(destination_key) => {
						let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
						Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
						              .push_slice(&wpubkey_hash.into_inner())
						              .into_script()
					},
					Err(_) => panic!("Your RNG is busted"),
				};
				let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
					Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
					Err(_) => panic!("Your RNG is busted"),
				};
				let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
				let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");

				let mut rand_bytes_unique_start = Sha256::engine();
				rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
				rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
				rand_bytes_unique_start.input(seed);

				let mut res = KeysManager {
					secp_ctx,
					node_secret,

					destination_script,
					shutdown_pubkey,

					channel_master_key,
					channel_child_index: AtomicUsize::new(0),

					rand_bytes_master_key,
					rand_bytes_child_index: AtomicUsize::new(0),
					rand_bytes_unique_start,

					seed: *seed,
					starting_time_secs,
					starting_time_nanos,
				};
				let secp_seed = res.get_secure_random_bytes();
				res.secp_ctx.seeded_randomize(&secp_seed);
				res
			},
			Err(_) => panic!("Your rng is busted"),
		}
	}
	/// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
	///
	/// Key derivation parameters are accessible through a per-channel secrets
	/// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
	/// onchain output detection for which a corresponding delayed_payment_key must be derived.
	pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
		let chan_id = byte_utils::slice_to_be64(&params[0..8]);
		assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
		let mut unique_start = Sha256::engine();
		unique_start.input(params);
		unique_start.input(&self.seed);

		// We only seriously intend to rely on the channel_master_key for true secure
		// entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
		// starting_time provided in the constructor) to be unique.
		let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
		unique_start.input(&child_privkey.private_key.key[..]);

		let seed = Sha256::from_engine(unique_start).into_inner();

		let commitment_seed = {
			let mut sha = Sha256::engine();
			sha.input(&seed);
			sha.input(&b"commitment seed"[..]);
			Sha256::from_engine(sha).into_inner()
		};
		macro_rules! key_step {
			($info: expr, $prev_key: expr) => {{
				let mut sha = Sha256::engine();
				sha.input(&seed);
				sha.input(&$prev_key[..]);
				sha.input(&$info[..]);
				SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
			}}
		}
		let funding_key = key_step!(b"funding key", commitment_seed);
		let revocation_base_key = key_step!(b"revocation base key", funding_key);
		let payment_key = key_step!(b"payment key", revocation_base_key);
		let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
		let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);

		InMemorySigner::new(
			&self.secp_ctx,
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			params.clone()
		)
	}

	/// Creates a Transaction which spends the given descriptors to the given outputs, plus an
	/// output to the given change destination (if sufficient change value remains). The
	/// transaction will have a feerate, at least, of the given value.
	///
	/// Returns `Err(())` if the output value is greater than the input value minus required fee or
	/// if a descriptor was duplicated.
	///
	/// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
	///
	/// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
	/// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
	pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
		let mut input = Vec::new();
		let mut input_value = 0;
		let mut witness_weight = 0;
		let mut output_set = HashSet::with_capacity(descriptors.len());
		for outp in descriptors {
			match outp {
				SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
					input.push(TxIn {
						previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: 0,
						witness: Vec::new(),
					});
					witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
					input_value += descriptor.output.value;
					if !output_set.insert(descriptor.outpoint) { return Err(()); }
				},
				SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
					input.push(TxIn {
						previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: descriptor.to_self_delay as u32,
						witness: Vec::new(),
					});
					witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
					input_value += descriptor.output.value;
					if !output_set.insert(descriptor.outpoint) { return Err(()); }
				},
				SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
					input.push(TxIn {
						previous_output: outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: 0,
						witness: Vec::new(),
					});
					witness_weight += 1 + 73 + 34;
					input_value += output.value;
					if !output_set.insert(*outpoint) { return Err(()); }
				}
			}
			if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
		}
		let mut spend_tx = Transaction {
			version: 2,
			lock_time: 0,
			input,
			output: outputs,
		};
		transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;

		let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
		let mut input_idx = 0;
		for outp in descriptors {
			match outp {
				SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
					if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
						keys_cache = Some((
							self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
							descriptor.channel_keys_id));
					}
					spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
				},
				SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
					if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
						keys_cache = Some((
							self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
							descriptor.channel_keys_id));
					}
					spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
				},
				SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
					let derivation_idx = if output.script_pubkey == self.destination_script {
						1
					} else {
						2
					};
					let secret = {
						// Note that when we aren't serializing the key, network doesn't matter
						match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
							Ok(master_key) => {
								match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
									Ok(key) => key,
									Err(_) => panic!("Your RNG is busted"),
								}
							}
							Err(_) => panic!("Your rng is busted"),
						}
					};
					let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
					if derivation_idx == 2 {
						assert_eq!(pubkey.key, self.shutdown_pubkey);
					}
					let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
					let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
					let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
					spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
					spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
					spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
				},
			}
			input_idx += 1;
		}
		Ok(spend_tx)
	}
}

impl KeysInterface for KeysManager {
	type Signer = InMemorySigner;

	fn get_node_secret(&self) -> SecretKey {
		self.node_secret.clone()
	}

	fn get_destination_script(&self) -> Script {
		self.destination_script.clone()
	}

	fn get_shutdown_pubkey(&self) -> PublicKey {
		self.shutdown_pubkey.clone()
	}

	fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
		let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
		assert!(child_ix <= core::u32::MAX as usize);
		let mut id = [0; 32];
		id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
		id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
		id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
		self.derive_channel_keys(channel_value_satoshis, &id)
	}

	fn get_secure_random_bytes(&self) -> [u8; 32] {
		let mut sha = self.rand_bytes_unique_start.clone();

		let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		sha.input(b"Unique Secure Random Bytes Salt");
		Sha256::from_engine(sha).into_inner()
	}

	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
		InMemorySigner::read(&mut std::io::Cursor::new(reader))
	}

	fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()> {
		Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&invoice_preimage)), &self.get_node_secret()))
	}
}

// Ensure that BaseSign can have a vtable
#[test]
pub fn dyn_sign() {
	let _signer: Box<dyn BaseSign>;
}