1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Provides keys to LDK and defines some useful objects describing spendable on-chain outputs.
//!
//! The provided output descriptors follow a custom LDK data format and are currently not fully
//! compatible with Bitcoin Core output descriptors.

use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
use bitcoin::util::sighash;

use bitcoin::bech32::u5;
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::WPubkeyHash;

use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
use bitcoin::secp256k1::ecdh::SharedSecret;
use bitcoin::secp256k1::ecdsa::RecoverableSignature;
use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};

use crate::util::transaction_utils;
use crate::util::crypto::{hkdf_extract_expand_twice, sign, sign_with_aux_rand};
use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
use crate::chain::transaction::OutPoint;
#[cfg(anchors)]
use crate::events::bump_transaction::HTLCDescriptor;
use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
use crate::ln::{chan_utils, PaymentPreimage};
use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
use crate::ln::script::ShutdownScript;

use crate::prelude::*;
use core::convert::TryInto;
use core::ops::Deref;
use core::sync::atomic::{AtomicUsize, Ordering};
use crate::io::{self, Error};
use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
use crate::util::atomic_counter::AtomicCounter;
use crate::util::chacha20::ChaCha20;
use crate::util::invoice::construct_invoice_preimage;

/// Used as initial key material, to be expanded into multiple secret keys (but not to be used
/// directly). This is used within LDK to encrypt/decrypt inbound payment data.
///
/// This is not exported to bindings users as we just use `[u8; 32]` directly
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct KeyMaterial(pub [u8; 32]);

/// Information about a spendable output to a P2WSH script.
///
/// See [`SpendableOutputDescriptor::DelayedPaymentOutput`] for more details on how to spend this.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct DelayedPaymentOutputDescriptor {
	/// The outpoint which is spendable.
	pub outpoint: OutPoint,
	/// Per commitment point to derive the delayed payment key by key holder.
	pub per_commitment_point: PublicKey,
	/// The `nSequence` value which must be set in the spending input to satisfy the `OP_CSV` in
	/// the witness_script.
	pub to_self_delay: u16,
	/// The output which is referenced by the given outpoint.
	pub output: TxOut,
	/// The revocation point specific to the commitment transaction which was broadcast. Used to
	/// derive the witnessScript for this output.
	pub revocation_pubkey: PublicKey,
	/// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
	/// This may be useful in re-deriving keys used in the channel to spend the output.
	pub channel_keys_id: [u8; 32],
	/// The value of the channel which this output originated from, possibly indirectly.
	pub channel_value_satoshis: u64,
}
impl DelayedPaymentOutputDescriptor {
	/// The maximum length a well-formed witness spending one of these should have.
	// Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
	// redeemscript push length.
	pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
}

impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
	(0, outpoint, required),
	(2, per_commitment_point, required),
	(4, to_self_delay, required),
	(6, output, required),
	(8, revocation_pubkey, required),
	(10, channel_keys_id, required),
	(12, channel_value_satoshis, required),
});

/// Information about a spendable output to our "payment key".
///
/// See [`SpendableOutputDescriptor::StaticPaymentOutput`] for more details on how to spend this.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct StaticPaymentOutputDescriptor {
	/// The outpoint which is spendable.
	pub outpoint: OutPoint,
	/// The output which is referenced by the given outpoint.
	pub output: TxOut,
	/// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
	/// This may be useful in re-deriving keys used in the channel to spend the output.
	pub channel_keys_id: [u8; 32],
	/// The value of the channel which this transactions spends.
	pub channel_value_satoshis: u64,
}
impl StaticPaymentOutputDescriptor {
	/// The maximum length a well-formed witness spending one of these should have.
	// Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
	// redeemscript push length.
	pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
}
impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
	(0, outpoint, required),
	(2, output, required),
	(4, channel_keys_id, required),
	(6, channel_value_satoshis, required),
});

/// Describes the necessary information to spend a spendable output.
///
/// When on-chain outputs are created by LDK (which our counterparty is not able to claim at any
/// point in the future) a [`SpendableOutputs`] event is generated which you must track and be able
/// to spend on-chain. The information needed to do this is provided in this enum, including the
/// outpoint describing which `txid` and output `index` is available, the full output which exists
/// at that `txid`/`index`, and any keys or other information required to sign.
///
/// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum SpendableOutputDescriptor {
	/// An output to a script which was provided via [`SignerProvider`] directly, either from
	/// [`get_destination_script`] or [`get_shutdown_scriptpubkey`], thus you should already
	/// know how to spend it. No secret keys are provided as LDK was never given any key.
	/// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
	/// on-chain using the payment preimage or after it has timed out.
	///
	/// [`get_shutdown_scriptpubkey`]: SignerProvider::get_shutdown_scriptpubkey
	/// [`get_destination_script`]: SignerProvider::get_shutdown_scriptpubkey
	StaticOutput {
		/// The outpoint which is spendable.
		outpoint: OutPoint,
		/// The output which is referenced by the given outpoint.
		output: TxOut,
	},
	/// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
	/// delay.
	///
	/// The witness in the spending input should be:
	/// ```bitcoin
	/// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
	/// ```
	///
	/// Note that the `nSequence` field in the spending input must be set to
	/// [`DelayedPaymentOutputDescriptor::to_self_delay`] (which means the transaction is not
	/// broadcastable until at least [`DelayedPaymentOutputDescriptor::to_self_delay`] blocks after
	/// the outpoint confirms, see [BIP
	/// 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki)). Also note that LDK
	/// won't generate a [`SpendableOutputDescriptor`] until the corresponding block height
	/// is reached.
	///
	/// These are generally the result of a "revocable" output to us, spendable only by us unless
	/// it is an output from an old state which we broadcast (which should never happen).
	///
	/// To derive the delayed payment key which is used to sign this input, you must pass the
	/// holder [`InMemorySigner::delayed_payment_base_key`] (i.e., the private key which corresponds to the
	/// [`ChannelPublicKeys::delayed_payment_basepoint`] in [`ChannelSigner::pubkeys`]) and the provided
	/// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to [`chan_utils::derive_private_key`]. The public key can be
	/// generated without the secret key using [`chan_utils::derive_public_key`] and only the
	/// [`ChannelPublicKeys::delayed_payment_basepoint`] which appears in [`ChannelSigner::pubkeys`].
	///
	/// To derive the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] provided here (which is
	/// used in the witness script generation), you must pass the counterparty
	/// [`ChannelPublicKeys::revocation_basepoint`] (which appears in the call to
	/// [`ChannelSigner::provide_channel_parameters`]) and the provided
	/// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to
	/// [`chan_utils::derive_public_revocation_key`].
	///
	/// The witness script which is hashed and included in the output `script_pubkey` may be
	/// regenerated by passing the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] (derived
	/// as explained above), our delayed payment pubkey (derived as explained above), and the
	/// [`DelayedPaymentOutputDescriptor::to_self_delay`] contained here to
	/// [`chan_utils::get_revokeable_redeemscript`].
	DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
	/// An output to a P2WPKH, spendable exclusively by our payment key (i.e., the private key
	/// which corresponds to the `payment_point` in [`ChannelSigner::pubkeys`]). The witness
	/// in the spending input is, thus, simply:
	/// ```bitcoin
	/// <BIP 143 signature> <payment key>
	/// ```
	///
	/// These are generally the result of our counterparty having broadcast the current state,
	/// allowing us to claim the non-HTLC-encumbered outputs immediately.
	StaticPaymentOutput(StaticPaymentOutputDescriptor),
}

impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
	(0, StaticOutput) => {
		(0, outpoint, required),
		(2, output, required),
	},
;
	(1, DelayedPaymentOutput),
	(2, StaticPaymentOutput),
);

/// A trait to handle Lightning channel key material without concretizing the channel type or
/// the signature mechanism.
pub trait ChannelSigner {
	/// Gets the per-commitment point for a specific commitment number
	///
	/// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
	fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;

	/// Gets the commitment secret for a specific commitment number as part of the revocation process
	///
	/// An external signer implementation should error here if the commitment was already signed
	/// and should refuse to sign it in the future.
	///
	/// May be called more than once for the same index.
	///
	/// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
	// TODO: return a Result so we can signal a validation error
	fn release_commitment_secret(&self, idx: u64) -> [u8; 32];

	/// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
	///
	/// This is required in order for the signer to make sure that releasing a commitment
	/// secret won't leave us without a broadcastable holder transaction.
	/// Policy checks should be implemented in this function, including checking the amount
	/// sent to us and checking the HTLCs.
	///
	/// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
	/// A validating signer should ensure that an HTLC output is removed only when the matching
	/// preimage is provided, or when the value to holder is restored.
	///
	/// Note that all the relevant preimages will be provided, but there may also be additional
	/// irrelevant or duplicate preimages.
	fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
		preimages: Vec<PaymentPreimage>) -> Result<(), ()>;

	/// Returns the holder's channel public keys and basepoints.
	fn pubkeys(&self) -> &ChannelPublicKeys;

	/// Returns an arbitrary identifier describing the set of keys which are provided back to you in
	/// some [`SpendableOutputDescriptor`] types. This should be sufficient to identify this
	/// [`EcdsaChannelSigner`] object uniquely and lookup or re-derive its keys.
	fn channel_keys_id(&self) -> [u8; 32];

	/// Set the counterparty static channel data, including basepoints,
	/// `counterparty_selected`/`holder_selected_contest_delay` and funding outpoint.
	///
	/// This data is static, and will never change for a channel once set. For a given [`ChannelSigner`]
	/// instance, LDK will call this method exactly once - either immediately after construction
	/// (not including if done via [`SignerProvider::read_chan_signer`]) or when the funding
	/// information has been generated.
	///
	/// channel_parameters.is_populated() MUST be true.
	fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters);
}

/// A trait to sign Lightning channel transactions as described in
/// [BOLT 3](https://github.com/lightning/bolts/blob/master/03-transactions.md).
///
/// Signing services could be implemented on a hardware wallet and should implement signing
/// policies in order to be secure. Please refer to the [VLS Policy
/// Controls](https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md)
/// for an example of such policies.
pub trait EcdsaChannelSigner: ChannelSigner {
	/// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
	///
	/// Note that if signing fails or is rejected, the channel will be force-closed.
	///
	/// Policy checks should be implemented in this function, including checking the amount
	/// sent to us and checking the HTLCs.
	///
	/// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
	/// A validating signer should ensure that an HTLC output is removed only when the matching
	/// preimage is provided, or when the value to holder is restored.
	///
	/// Note that all the relevant preimages will be provided, but there may also be additional
	/// irrelevant or duplicate preimages.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction,
		preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>
	) -> Result<(Signature, Vec<Signature>), ()>;
	/// Validate the counterparty's revocation.
	///
	/// This is required in order for the signer to make sure that the state has moved
	/// forward and it is safe to sign the next counterparty commitment.
	fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
	/// Creates a signature for a holder's commitment transaction and its claiming HTLC transactions.
	///
	/// This will be called
	/// - with a non-revoked `commitment_tx`.
	/// - with the latest `commitment_tx` when we initiate a force-close.
	/// - with the previous `commitment_tx`, just to get claiming HTLC
	///   signatures, if we are reacting to a [`ChannelMonitor`]
	///   [replica](https://github.com/lightningdevkit/rust-lightning/blob/main/GLOSSARY.md#monitor-replicas)
	///   that decided to broadcast before it had been updated to the latest `commitment_tx`.
	///
	/// This may be called multiple times for the same transaction.
	///
	/// An external signer implementation should check that the commitment has not been revoked.
	///
	/// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
	// TODO: Document the things someone using this interface should enforce before signing.
	fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
		secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
	/// Same as [`sign_holder_commitment_and_htlcs`], but exists only for tests to get access to
	/// holder commitment transactions which will be broadcasted later, after the channel has moved
	/// on to a newer state. Thus, needs its own method as [`sign_holder_commitment_and_htlcs`] may
	/// enforce that we only ever get called once.
	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
		secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
	/// Create a signature for the given input in a transaction spending an HTLC transaction output
	/// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiple outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiple times for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// `per_commitment_key` is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder `revocation_secret` to do
	/// so).
	fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64,
		per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>
	) -> Result<Signature, ()>;
	/// Create a signature for the given input in a transaction spending a commitment transaction
	/// HTLC output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiple outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiple times for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// `amount` is the value of the output spent by this input, committed to in the BIP 143
	/// signature.
	///
	/// `per_commitment_key` is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder revocation_secret to do
	/// so).
	///
	/// `htlc` holds HTLC elements (hash, timelock), thus changing the format of the witness script
	/// (which is committed to in the BIP 143 signatures).
	fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64,
		per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment,
		secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
	#[cfg(anchors)]
	/// Computes the signature for a commitment transaction's HTLC output used as an input within
	/// `htlc_tx`, which spends the commitment transaction at index `input`. The signature returned
	/// must be be computed using [`EcdsaSighashType::All`]. Note that this should only be used to
	/// sign HTLC transactions from channels supporting anchor outputs after all additional
	/// inputs/outputs have been added to the transaction.
	///
	/// [`EcdsaSighashType::All`]: bitcoin::blockdata::transaction::EcdsaSighashType::All
	fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize,
		htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<secp256k1::All>
	) -> Result<Signature, ()>;
	/// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
	/// transaction, either offered or received.
	///
	/// Such a transaction may claim multiples offered outputs at same time if we know the
	/// preimage for each when we create it, but only the input at index `input` should be
	/// signed for here. It may be called multiple times for same output(s) if a fee-bump is
	/// needed with regards to an upcoming timelock expiration.
	///
	/// `witness_script` is either an offered or received script as defined in BOLT3 for HTLC
	/// outputs.
	///
	/// `amount` is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// `per_commitment_point` is the dynamic point corresponding to the channel state
	/// detected onchain. It has been generated by our counterparty and is used to derive
	/// channel state keys, which are then included in the witness script and committed to in the
	/// BIP 143 signature.
	fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64,
		per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment,
		secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
	/// Create a signature for a (proposed) closing transaction.
	///
	/// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
	/// chosen to forgo their output as dust.
	fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction,
		secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
	/// Computes the signature for a commitment transaction's anchor output used as an
	/// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
	fn sign_holder_anchor_input(
		&self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
	) -> Result<Signature, ()>;
	/// Signs a channel announcement message with our funding key proving it comes from one of the
	/// channel participants.
	///
	/// Channel announcements also require a signature from each node's network key. Our node
	/// signature is computed through [`NodeSigner::sign_gossip_message`].
	///
	/// Note that if this fails or is rejected, the channel will not be publicly announced and
	/// our counterparty may (though likely will not) close the channel on us for violating the
	/// protocol.
	fn sign_channel_announcement_with_funding_key(
		&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
	) -> Result<Signature, ()>;
}

/// A writeable signer.
///
/// There will always be two instances of a signer per channel, one occupied by the
/// [`ChannelManager`] and another by the channel's [`ChannelMonitor`].
///
/// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
/// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
pub trait WriteableEcdsaChannelSigner: EcdsaChannelSigner + Writeable {}

/// Specifies the recipient of an invoice.
///
/// This indicates to [`NodeSigner::sign_invoice`] what node secret key should be used to sign
/// the invoice.
pub enum Recipient {
	/// The invoice should be signed with the local node secret key.
	Node,
	/// The invoice should be signed with the phantom node secret key. This secret key must be the
	/// same for all nodes participating in the [phantom node payment].
	///
	/// [phantom node payment]: PhantomKeysManager
	PhantomNode,
}

/// A trait that describes a source of entropy.
pub trait EntropySource {
	/// Gets a unique, cryptographically-secure, random 32-byte value. This method must return a
	/// different value each time it is called.
	fn get_secure_random_bytes(&self) -> [u8; 32];
}

/// A trait that can handle cryptographic operations at the scope level of a node.
pub trait NodeSigner {
	/// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
	///
	/// If the implementor of this trait supports [phantom node payments], then every node that is
	/// intended to be included in the phantom invoice route hints must return the same value from
	/// this method.
	// This is because LDK avoids storing inbound payment data by encrypting payment data in the
	// payment hash and/or payment secret, therefore for a payment to be receivable by multiple
	// nodes, they must share the key that encrypts this payment data.
	///
	/// This method must return the same value each time it is called.
	///
	/// [phantom node payments]: PhantomKeysManager
	fn get_inbound_payment_key_material(&self) -> KeyMaterial;

	/// Get node id based on the provided [`Recipient`].
	///
	/// This method must return the same value each time it is called with a given [`Recipient`]
	/// parameter.
	///
	/// Errors if the [`Recipient`] variant is not supported by the implementation.
	fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()>;

	/// Gets the ECDH shared secret of our node secret and `other_key`, multiplying by `tweak` if
	/// one is provided. Note that this tweak can be applied to `other_key` instead of our node
	/// secret, though this is less efficient.
	///
	/// Note that if this fails while attempting to forward an HTLC, LDK will panic. The error
	/// should be resolved to allow LDK to resume forwarding HTLCs.
	///
	/// Errors if the [`Recipient`] variant is not supported by the implementation.
	fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;

	/// Sign an invoice.
	///
	/// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
	/// this trait to parse the invoice and make sure they're signing what they expect, rather than
	/// blindly signing the hash.
	///
	/// The `hrp_bytes` are ASCII bytes, while the `invoice_data` is base32.
	///
	/// The secret key used to sign the invoice is dependent on the [`Recipient`].
	///
	/// Errors if the [`Recipient`] variant is not supported by the implementation.
	fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()>;

	/// Sign a gossip message.
	///
	/// Note that if this fails, LDK may panic and the message will not be broadcast to the network
	/// or a possible channel counterparty. If LDK panics, the error should be resolved to allow the
	/// message to be broadcast, as otherwise it may prevent one from receiving funds over the
	/// corresponding channel.
	fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()>;
}

/// A trait that can return signer instances for individual channels.
pub trait SignerProvider {
	/// A type which implements [`WriteableEcdsaChannelSigner`] which will be returned by [`Self::derive_channel_signer`].
	type Signer : WriteableEcdsaChannelSigner;

	/// Generates a unique `channel_keys_id` that can be used to obtain a [`Self::Signer`] through
	/// [`SignerProvider::derive_channel_signer`]. The `user_channel_id` is provided to allow
	/// implementations of [`SignerProvider`] to maintain a mapping between itself and the generated
	/// `channel_keys_id`.
	///
	/// This method must return a different value each time it is called.
	fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];

	/// Derives the private key material backing a `Signer`.
	///
	/// To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through
	/// [`SignerProvider::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
	/// re-derived from its `channel_keys_id`, which can be obtained through its trait method
	/// [`ChannelSigner::channel_keys_id`].
	fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer;

	/// Reads a [`Signer`] for this [`SignerProvider`] from the given input stream.
	/// This is only called during deserialization of other objects which contain
	/// [`WriteableEcdsaChannelSigner`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s).
	/// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
	/// contain no versioning scheme. You may wish to include your own version prefix and ensure
	/// you've read all of the provided bytes to ensure no corruption occurred.
	///
	/// This method is slowly being phased out -- it will only be called when reading objects
	/// written by LDK versions prior to 0.0.113.
	///
	/// [`Signer`]: Self::Signer
	/// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
	/// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;

	/// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
	///
	/// This method should return a different value each time it is called, to avoid linking
	/// on-chain funds across channels as controlled to the same user.
	fn get_destination_script(&self) -> Script;

	/// Get a script pubkey which we will send funds to when closing a channel.
	///
	/// This method should return a different value each time it is called, to avoid linking
	/// on-chain funds across channels as controlled to the same user.
	fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
}

/// A simple implementation of [`WriteableEcdsaChannelSigner`] that just keeps the private keys in memory.
///
/// This implementation performs no policy checks and is insufficient by itself as
/// a secure external signer.
pub struct InMemorySigner {
	/// Holder secret key in the 2-of-2 multisig script of a channel. This key also backs the
	/// holder's anchor output in a commitment transaction, if one is present.
	pub funding_key: SecretKey,
	/// Holder secret key for blinded revocation pubkey.
	pub revocation_base_key: SecretKey,
	/// Holder secret key used for our balance in counterparty-broadcasted commitment transactions.
	pub payment_key: SecretKey,
	/// Holder secret key used in an HTLC transaction.
	pub delayed_payment_base_key: SecretKey,
	/// Holder HTLC secret key used in commitment transaction HTLC outputs.
	pub htlc_base_key: SecretKey,
	/// Commitment seed.
	pub commitment_seed: [u8; 32],
	/// Holder public keys and basepoints.
	pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
	/// Counterparty public keys and counterparty/holder `selected_contest_delay`, populated on channel acceptance.
	channel_parameters: Option<ChannelTransactionParameters>,
	/// The total value of this channel.
	channel_value_satoshis: u64,
	/// Key derivation parameters.
	channel_keys_id: [u8; 32],
	/// Seed from which all randomness produced is derived from.
	rand_bytes_unique_start: [u8; 32],
	/// Tracks the number of times we've produced randomness to ensure we don't return the same
	/// bytes twice.
	rand_bytes_index: AtomicCounter,
}

impl Clone for InMemorySigner {
	fn clone(&self) -> Self {
		Self {
			funding_key: self.funding_key.clone(),
			revocation_base_key: self.revocation_base_key.clone(),
			payment_key: self.payment_key.clone(),
			delayed_payment_base_key: self.delayed_payment_base_key.clone(),
			htlc_base_key: self.htlc_base_key.clone(),
			commitment_seed: self.commitment_seed.clone(),
			holder_channel_pubkeys: self.holder_channel_pubkeys.clone(),
			channel_parameters: self.channel_parameters.clone(),
			channel_value_satoshis: self.channel_value_satoshis,
			channel_keys_id: self.channel_keys_id,
			rand_bytes_unique_start: self.get_secure_random_bytes(),
			rand_bytes_index: AtomicCounter::new(),
		}
	}
}

impl InMemorySigner {
	/// Creates a new [`InMemorySigner`].
	pub fn new<C: Signing>(
		secp_ctx: &Secp256k1<C>,
		funding_key: SecretKey,
		revocation_base_key: SecretKey,
		payment_key: SecretKey,
		delayed_payment_base_key: SecretKey,
		htlc_base_key: SecretKey,
		commitment_seed: [u8; 32],
		channel_value_satoshis: u64,
		channel_keys_id: [u8; 32],
		rand_bytes_unique_start: [u8; 32],
	) -> InMemorySigner {
		let holder_channel_pubkeys =
			InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
				&payment_key, &delayed_payment_base_key,
				&htlc_base_key);
		InMemorySigner {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			channel_parameters: None,
			channel_keys_id,
			rand_bytes_unique_start,
			rand_bytes_index: AtomicCounter::new(),
		}
	}

	fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
			funding_key: &SecretKey,
			revocation_base_key: &SecretKey,
			payment_key: &SecretKey,
			delayed_payment_base_key: &SecretKey,
			htlc_base_key: &SecretKey) -> ChannelPublicKeys {
		let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
		ChannelPublicKeys {
			funding_pubkey: from_secret(&funding_key),
			revocation_basepoint: from_secret(&revocation_base_key),
			payment_point: from_secret(&payment_key),
			delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
			htlc_basepoint: from_secret(&htlc_base_key),
		}
	}

	/// Returns the counterparty's pubkeys.
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
	/// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
	/// transactions, i.e., the amount of time that we have to wait to recover our funds if we
	/// broadcast a transaction.
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
	/// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
	/// by our counterparty, i.e., the amount of time that they have to wait to recover their funds
	/// if they broadcast a transaction.
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
	/// Returns whether the holder is the initiator.
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
	/// Funding outpoint
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
	/// Returns a [`ChannelTransactionParameters`] for this channel, to be used when verifying or
	/// building transactions.
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
		self.channel_parameters.as_ref().unwrap()
	}
	/// Returns whether anchors should be used.
	///
	/// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
	pub fn opt_anchors(&self) -> bool {
		self.get_channel_parameters().opt_anchors.is_some()
	}
	/// Sign the single input of `spend_tx` at index `input_idx`, which spends the output described
	/// by `descriptor`, returning the witness stack for the input.
	///
	/// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
	/// is not spending the outpoint described by [`descriptor.outpoint`],
	/// or if an output descriptor `script_pubkey` does not match the one we can spend.
	///
	/// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
	pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
		// TODO: We really should be taking the SigHashCache as a parameter here instead of
		// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
		// so that we can check them. This requires upstream rust-bitcoin changes (as well as
		// bindings updates to support SigHashCache objects).
		if spend_tx.input.len() <= input_idx { return Err(()); }
		if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
		if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }

		let remotepubkey = self.pubkeys().payment_point;
		let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
		let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
		let remotesig = sign_with_aux_rand(secp_ctx, &sighash, &self.payment_key, &self);
		let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();

		if payment_script != descriptor.output.script_pubkey { return Err(()); }

		let mut witness = Vec::with_capacity(2);
		witness.push(remotesig.serialize_der().to_vec());
		witness[0].push(EcdsaSighashType::All as u8);
		witness.push(remotepubkey.serialize().to_vec());
		Ok(witness)
	}

	/// Sign the single input of `spend_tx` at index `input_idx` which spends the output
	/// described by `descriptor`, returning the witness stack for the input.
	///
	/// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
	/// is not spending the outpoint described by [`descriptor.outpoint`], does not have a
	/// sequence set to [`descriptor.to_self_delay`], or if an output descriptor
	/// `script_pubkey` does not match the one we can spend.
	///
	/// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
	/// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
	pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
		// TODO: We really should be taking the SigHashCache as a parameter here instead of
		// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
		// so that we can check them. This requires upstream rust-bitcoin changes (as well as
		// bindings updates to support SigHashCache objects).
		if spend_tx.input.len() <= input_idx { return Err(()); }
		if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
		if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
		if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }

		let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
		let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
		let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
		let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
		let local_delayedsig = sign_with_aux_rand(secp_ctx, &sighash, &delayed_payment_key, &self);
		let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();

		if descriptor.output.script_pubkey != payment_script { return Err(()); }

		let mut witness = Vec::with_capacity(3);
		witness.push(local_delayedsig.serialize_der().to_vec());
		witness[0].push(EcdsaSighashType::All as u8);
		witness.push(vec!()); //MINIMALIF
		witness.push(witness_script.clone().into_bytes());
		Ok(witness)
	}
}

impl EntropySource for InMemorySigner {
	fn get_secure_random_bytes(&self) -> [u8; 32] {
		let index = self.rand_bytes_index.get_increment();
		let mut nonce = [0u8; 16];
		nonce[..8].copy_from_slice(&index.to_be_bytes());
		ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
	}
}

impl ChannelSigner for InMemorySigner {
	fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
		let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
		PublicKey::from_secret_key(secp_ctx, &commitment_secret)
	}

	fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
		chan_utils::build_commitment_secret(&self.commitment_seed, idx)
	}

	fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
		Ok(())
	}

	fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }

	fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }

	fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
		assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
		if self.channel_parameters.is_some() {
			// The channel parameters were already set and they match, return early.
			return;
		}
		assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
		self.channel_parameters = Some(channel_parameters.clone());
	}
}

impl EcdsaChannelSigner for InMemorySigner {
	fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let trusted_tx = commitment_tx.trust();
		let keys = trusted_tx.keys();

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);

		let built_tx = trusted_tx.built_transaction();
		let commitment_sig = built_tx.sign_counterparty_commitment(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let commitment_txid = built_tx.txid;

		let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
		for htlc in commitment_tx.htlcs() {
			let channel_parameters = self.get_channel_parameters();
			let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), channel_parameters.opt_non_zero_fee_anchors.is_some(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
			let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
			let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
			let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
			let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
			htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
		}

		Ok((commitment_sig, htlc_sigs))
	}

	fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
		Ok(())
	}

	fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		let trusted_tx = commitment_tx.trust();
		let sig = trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx);
		let channel_parameters = self.get_channel_parameters();
		let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), &self, secp_ctx)?;
		Ok((sig, htlc_sigs))
	}

	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		let trusted_tx = commitment_tx.trust();
		let sig = trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx);
		let channel_parameters = self.get_channel_parameters();
		let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), &self, secp_ctx)?;
		Ok((sig, htlc_sigs))
	}

	fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
		let witness_script = {
			let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint);
			chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
		};
		let mut sighash_parts = sighash::SighashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
		return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
	}

	fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
		let witness_script = {
			let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
			let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
			chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
		};
		let mut sighash_parts = sighash::SighashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
		return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
	}

	#[cfg(anchors)]
	fn sign_holder_htlc_transaction(
		&self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
		secp_ctx: &Secp256k1<secp256k1::All>
	) -> Result<Signature, ()> {
		let per_commitment_point = self.get_per_commitment_point(
			htlc_descriptor.per_commitment_number, &secp_ctx
		);
		let witness_script = htlc_descriptor.witness_script(&per_commitment_point, secp_ctx);
		let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
			input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
		).map_err(|_| ())?;
		let our_htlc_private_key = chan_utils::derive_private_key(
			&secp_ctx, &per_commitment_point, &self.htlc_base_key
		);
		Ok(sign_with_aux_rand(&secp_ctx, &hash_to_message!(sighash), &our_htlc_private_key, &self))
	}

	fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
		let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
		let htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
		let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
		let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
		let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
		Ok(sign_with_aux_rand(secp_ctx, &sighash, &htlc_key, &self))
	}

	fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
	}

	fn sign_holder_anchor_input(
		&self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
	) -> Result<Signature, ()> {
		let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
		let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
			input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
		).unwrap();
		Ok(sign_with_aux_rand(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key, &self))
	}

	fn sign_channel_announcement_with_funding_key(
		&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
	) -> Result<Signature, ()> {
		let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
		Ok(secp_ctx.sign_ecdsa(&msghash, &self.funding_key))
	}
}

const SERIALIZATION_VERSION: u8 = 1;

const MIN_SERIALIZATION_VERSION: u8 = 1;

impl WriteableEcdsaChannelSigner for InMemorySigner {}

impl Writeable for InMemorySigner {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);

		self.funding_key.write(writer)?;
		self.revocation_base_key.write(writer)?;
		self.payment_key.write(writer)?;
		self.delayed_payment_base_key.write(writer)?;
		self.htlc_base_key.write(writer)?;
		self.commitment_seed.write(writer)?;
		self.channel_parameters.write(writer)?;
		self.channel_value_satoshis.write(writer)?;
		self.channel_keys_id.write(writer)?;

		write_tlv_fields!(writer, {});

		Ok(())
	}
}

impl<ES: Deref> ReadableArgs<ES> for InMemorySigner where ES::Target: EntropySource {
	fn read<R: io::Read>(reader: &mut R, entropy_source: ES) -> Result<Self, DecodeError> {
		let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);

		let funding_key = Readable::read(reader)?;
		let revocation_base_key = Readable::read(reader)?;
		let payment_key = Readable::read(reader)?;
		let delayed_payment_base_key = Readable::read(reader)?;
		let htlc_base_key = Readable::read(reader)?;
		let commitment_seed = Readable::read(reader)?;
		let counterparty_channel_data = Readable::read(reader)?;
		let channel_value_satoshis = Readable::read(reader)?;
		let secp_ctx = Secp256k1::signing_only();
		let holder_channel_pubkeys =
			InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
				 &payment_key, &delayed_payment_base_key, &htlc_base_key);
		let keys_id = Readable::read(reader)?;

		read_tlv_fields!(reader, {});

		Ok(InMemorySigner {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			channel_parameters: counterparty_channel_data,
			channel_keys_id: keys_id,
			rand_bytes_unique_start: entropy_source.get_secure_random_bytes(),
			rand_bytes_index: AtomicCounter::new(),
		})
	}
}

/// Simple implementation of [`EntropySource`], [`NodeSigner`], and [`SignerProvider`] that takes a
/// 32-byte seed for use as a BIP 32 extended key and derives keys from that.
///
/// Your `node_id` is seed/0'.
/// Unilateral closes may use seed/1'.
/// Cooperative closes may use seed/2'.
/// The two close keys may be needed to claim on-chain funds!
///
/// This struct cannot be used for nodes that wish to support receiving phantom payments;
/// [`PhantomKeysManager`] must be used instead.
///
/// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
/// previously issued invoices and attempts to pay previous invoices will fail.
pub struct KeysManager {
	secp_ctx: Secp256k1<secp256k1::All>,
	node_secret: SecretKey,
	node_id: PublicKey,
	inbound_payment_key: KeyMaterial,
	destination_script: Script,
	shutdown_pubkey: PublicKey,
	channel_master_key: ExtendedPrivKey,
	channel_child_index: AtomicUsize,

	rand_bytes_unique_start: [u8; 32],
	rand_bytes_index: AtomicCounter,

	seed: [u8; 32],
	starting_time_secs: u64,
	starting_time_nanos: u32,
}

impl KeysManager {
	/// Constructs a [`KeysManager`] from a 32-byte seed. If the seed is in some way biased (e.g.,
	/// your CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
	/// `starting_time` isn't strictly required to actually be a time, but it must absolutely,
	/// without a doubt, be unique to this instance. ie if you start multiple times with the same
	/// `seed`, `starting_time` must be unique to each run. Thus, the easiest way to achieve this
	/// is to simply use the current time (with very high precision).
	///
	/// The `seed` MUST be backed up safely prior to use so that the keys can be re-created, however,
	/// obviously, `starting_time` should be unique every time you reload the library - it is only
	/// used to generate new ephemeral key data (which will be stored by the individual channel if
	/// necessary).
	///
	/// Note that the seed is required to recover certain on-chain funds independent of
	/// [`ChannelMonitor`] data, though a current copy of [`ChannelMonitor`] data is also required
	/// for any channel, and some on-chain during-closing funds.
	///
	/// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
	pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
		let secp_ctx = Secp256k1::new();
		// Note that when we aren't serializing the key, network doesn't matter
		match ExtendedPrivKey::new_master(Network::Testnet, seed) {
			Ok(master_key) => {
				let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
				let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
				let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
					Ok(destination_key) => {
						let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
						Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
							.push_slice(&wpubkey_hash.into_inner())
							.into_script()
					},
					Err(_) => panic!("Your RNG is busted"),
				};
				let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
					Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
					Err(_) => panic!("Your RNG is busted"),
				};
				let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
				let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
				let mut inbound_pmt_key_bytes = [0; 32];
				inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);

				let mut rand_bytes_engine = Sha256::engine();
				rand_bytes_engine.input(&starting_time_secs.to_be_bytes());
				rand_bytes_engine.input(&starting_time_nanos.to_be_bytes());
				rand_bytes_engine.input(seed);
				rand_bytes_engine.input(b"LDK PRNG Seed");
				let rand_bytes_unique_start = Sha256::from_engine(rand_bytes_engine).into_inner();

				let mut res = KeysManager {
					secp_ctx,
					node_secret,
					node_id,
					inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),

					destination_script,
					shutdown_pubkey,

					channel_master_key,
					channel_child_index: AtomicUsize::new(0),

					rand_bytes_unique_start,
					rand_bytes_index: AtomicCounter::new(),

					seed: *seed,
					starting_time_secs,
					starting_time_nanos,
				};
				let secp_seed = res.get_secure_random_bytes();
				res.secp_ctx.seeded_randomize(&secp_seed);
				res
			},
			Err(_) => panic!("Your rng is busted"),
		}
	}

	/// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
	pub fn get_node_secret_key(&self) -> SecretKey {
		self.node_secret
	}

	/// Derive an old [`WriteableEcdsaChannelSigner`] containing per-channel secrets based on a key derivation parameters.
	pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
		let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
		let mut unique_start = Sha256::engine();
		unique_start.input(params);
		unique_start.input(&self.seed);

		// We only seriously intend to rely on the channel_master_key for true secure
		// entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
		// starting_time provided in the constructor) to be unique.
		let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx,
				ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31)).expect("key space exhausted")
			).expect("Your RNG is busted");
		unique_start.input(&child_privkey.private_key[..]);

		let seed = Sha256::from_engine(unique_start).into_inner();

		let commitment_seed = {
			let mut sha = Sha256::engine();
			sha.input(&seed);
			sha.input(&b"commitment seed"[..]);
			Sha256::from_engine(sha).into_inner()
		};
		macro_rules! key_step {
			($info: expr, $prev_key: expr) => {{
				let mut sha = Sha256::engine();
				sha.input(&seed);
				sha.input(&$prev_key[..]);
				sha.input(&$info[..]);
				SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
			}}
		}
		let funding_key = key_step!(b"funding key", commitment_seed);
		let revocation_base_key = key_step!(b"revocation base key", funding_key);
		let payment_key = key_step!(b"payment key", revocation_base_key);
		let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
		let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
		let prng_seed = self.get_secure_random_bytes();

		InMemorySigner::new(
			&self.secp_ctx,
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			params.clone(),
			prng_seed,
		)
	}

	/// Creates a [`Transaction`] which spends the given descriptors to the given outputs, plus an
	/// output to the given change destination (if sufficient change value remains). The
	/// transaction will have a feerate, at least, of the given value.
	///
	/// Returns `Err(())` if the output value is greater than the input value minus required fee,
	/// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
	/// does not match the one we can spend.
	///
	/// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
	///
	/// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
	/// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
	pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
		let mut input = Vec::new();
		let mut input_value = 0;
		let mut witness_weight = 0;
		let mut output_set = HashSet::with_capacity(descriptors.len());
		for outp in descriptors {
			match outp {
				SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
					input.push(TxIn {
						previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: Sequence::ZERO,
						witness: Witness::new(),
					});
					witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
					input_value += descriptor.output.value;
					if !output_set.insert(descriptor.outpoint) { return Err(()); }
				},
				SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
					input.push(TxIn {
						previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: Sequence(descriptor.to_self_delay as u32),
						witness: Witness::new(),
					});
					witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
					input_value += descriptor.output.value;
					if !output_set.insert(descriptor.outpoint) { return Err(()); }
				},
				SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
					input.push(TxIn {
						previous_output: outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: Sequence::ZERO,
						witness: Witness::new(),
					});
					witness_weight += 1 + 73 + 34;
					input_value += output.value;
					if !output_set.insert(*outpoint) { return Err(()); }
				}
			}
			if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
		}
		let mut spend_tx = Transaction {
			version: 2,
			lock_time: PackedLockTime(0),
			input,
			output: outputs,
		};
		let expected_max_weight =
			transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;

		let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
		let mut input_idx = 0;
		for outp in descriptors {
			match outp {
				SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
					if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
						keys_cache = Some((
							self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
							descriptor.channel_keys_id));
					}
					spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
				},
				SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
					if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
						keys_cache = Some((
							self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
							descriptor.channel_keys_id));
					}
					spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
				},
				SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
					let derivation_idx = if output.script_pubkey == self.destination_script {
						1
					} else {
						2
					};
					let secret = {
						// Note that when we aren't serializing the key, network doesn't matter
						match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
							Ok(master_key) => {
								match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
									Ok(key) => key,
									Err(_) => panic!("Your RNG is busted"),
								}
							}
							Err(_) => panic!("Your rng is busted"),
						}
					};
					let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
					if derivation_idx == 2 {
						assert_eq!(pubkey.inner, self.shutdown_pubkey);
					}
					let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
					let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();

					if payment_script != output.script_pubkey { return Err(()); };

					let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
					let sig = sign_with_aux_rand(secp_ctx, &sighash, &secret.private_key, &self);
					let mut sig_ser = sig.serialize_der().to_vec();
					sig_ser.push(EcdsaSighashType::All as u8);
					spend_tx.input[input_idx].witness.push(sig_ser);
					spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
				},
			}
			input_idx += 1;
		}

		debug_assert!(expected_max_weight >= spend_tx.weight());
		// Note that witnesses with a signature vary somewhat in size, so allow
		// `expected_max_weight` to overshoot by up to 3 bytes per input.
		debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);

		Ok(spend_tx)
	}
}

impl EntropySource for KeysManager {
	fn get_secure_random_bytes(&self) -> [u8; 32] {
		let index = self.rand_bytes_index.get_increment();
		let mut nonce = [0u8; 16];
		nonce[..8].copy_from_slice(&index.to_be_bytes());
		ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
	}
}

impl NodeSigner for KeysManager {
	fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
		match recipient {
			Recipient::Node => Ok(self.node_id.clone()),
			Recipient::PhantomNode => Err(())
		}
	}

	fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
		let mut node_secret = match recipient {
			Recipient::Node => Ok(self.node_secret.clone()),
			Recipient::PhantomNode => Err(())
		}?;
		if let Some(tweak) = tweak {
			node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
		}
		Ok(SharedSecret::new(other_key, &node_secret))
	}

	fn get_inbound_payment_key_material(&self) -> KeyMaterial {
		self.inbound_payment_key.clone()
	}

	fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
		let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
		let secret = match recipient {
			Recipient::Node => Ok(&self.node_secret),
			Recipient::PhantomNode => Err(())
		}?;
		Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
	}

	fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
		let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
		Ok(self.secp_ctx.sign_ecdsa(&msg_hash, &self.node_secret))
	}
}

impl SignerProvider for KeysManager {
	type Signer = InMemorySigner;

	fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
		let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
		// `child_idx` is the only thing guaranteed to make each channel unique without a restart
		// (though `user_channel_id` should help, depending on user behavior). If it manages to
		// roll over, we may generate duplicate keys for two different channels, which could result
		// in loss of funds. Because we only support 32-bit+ systems, assert that our `AtomicUsize`
		// doesn't reach `u32::MAX`.
		assert!(child_idx < core::u32::MAX as usize, "2^32 channels opened without restart");
		let mut id = [0; 32];
		id[0..4].copy_from_slice(&(child_idx as u32).to_be_bytes());
		id[4..8].copy_from_slice(&self.starting_time_nanos.to_be_bytes());
		id[8..16].copy_from_slice(&self.starting_time_secs.to_be_bytes());
		id[16..32].copy_from_slice(&user_channel_id.to_be_bytes());
		id
	}

	fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
		self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
	}

	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
		InMemorySigner::read(&mut io::Cursor::new(reader), self)
	}

	fn get_destination_script(&self) -> Script {
		self.destination_script.clone()
	}

	fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
		ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
	}
}

/// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
/// payments.
///
/// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
/// paid to one of multiple nodes. This works because we encode the invoice route hints such that
/// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
/// itself without ever needing to forward to this fake node.
///
/// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
/// provide some fault tolerance, because payers will automatically retry paying other provided
/// nodes in the case that one node goes down.
///
/// Note that multi-path payments are not supported in phantom invoices for security reasons.
// In the hypothetical case that we did support MPP phantom payments, there would be no way for
// nodes to know when the full payment has been received (and the preimage can be released) without
// significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
// to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
// is released too early.
//
/// Switching between this struct and [`KeysManager`] will invalidate any previously issued
/// invoices and attempts to pay previous invoices will fail.
pub struct PhantomKeysManager {
	inner: KeysManager,
	inbound_payment_key: KeyMaterial,
	phantom_secret: SecretKey,
	phantom_node_id: PublicKey,
}

impl EntropySource for PhantomKeysManager {
	fn get_secure_random_bytes(&self) -> [u8; 32] {
		self.inner.get_secure_random_bytes()
	}
}

impl NodeSigner for PhantomKeysManager {
	fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
		match recipient {
			Recipient::Node => self.inner.get_node_id(Recipient::Node),
			Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
		}
	}

	fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
		let mut node_secret = match recipient {
			Recipient::Node => self.inner.node_secret.clone(),
			Recipient::PhantomNode => self.phantom_secret.clone(),
		};
		if let Some(tweak) = tweak {
			node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
		}
		Ok(SharedSecret::new(other_key, &node_secret))
	}

	fn get_inbound_payment_key_material(&self) -> KeyMaterial {
		self.inbound_payment_key.clone()
	}

	fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
		let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
		let secret = match recipient {
			Recipient::Node => &self.inner.node_secret,
			Recipient::PhantomNode => &self.phantom_secret,
		};
		Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
	}

	fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
		self.inner.sign_gossip_message(msg)
	}
}

impl SignerProvider for PhantomKeysManager {
	type Signer = InMemorySigner;

	fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
		self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
	}

	fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
		self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
	}

	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
		self.inner.read_chan_signer(reader)
	}

	fn get_destination_script(&self) -> Script {
		self.inner.get_destination_script()
	}

	fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
		self.inner.get_shutdown_scriptpubkey()
	}
}

impl PhantomKeysManager {
	/// Constructs a [`PhantomKeysManager`] given a 32-byte seed and an additional `cross_node_seed`
	/// that is shared across all nodes that intend to participate in [phantom node payments]
	/// together.
	///
	/// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
	/// `starting_time_nanos`.
	///
	/// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
	/// same across restarts, or else inbound payments may fail.
	///
	/// [phantom node payments]: PhantomKeysManager
	pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
		let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
		let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
		let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
		let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
		Self {
			inner,
			inbound_payment_key: KeyMaterial(inbound_key),
			phantom_secret,
			phantom_node_id,
		}
	}

	/// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
	pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
		self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
	}

	/// See [`KeysManager::derive_channel_keys`] for documentation on this method.
	pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
		self.inner.derive_channel_keys(channel_value_satoshis, params)
	}

	/// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
	pub fn get_node_secret_key(&self) -> SecretKey {
		self.inner.get_node_secret_key()
	}

	/// Gets the "node_id" secret key of the phantom node used to sign invoices, decode the
	/// last-hop onion data, etc.
	pub fn get_phantom_node_secret_key(&self) -> SecretKey {
		self.phantom_secret
	}
}

// Ensure that EcdsaChannelSigner can have a vtable
#[test]
pub fn dyn_sign() {
	let _signer: Box<dyn EcdsaChannelSigner>;
}

#[cfg(all(test, feature = "_bench_unstable", not(feature = "no-std")))]
mod benches {
	use std::sync::{Arc, mpsc};
	use std::sync::mpsc::TryRecvError;
	use std::thread;
	use std::time::Duration;
	use bitcoin::blockdata::constants::genesis_block;
	use bitcoin::Network;
	use crate::chain::keysinterface::{EntropySource, KeysManager};

	use test::Bencher;

	#[bench]
	fn bench_get_secure_random_bytes(bench: &mut Bencher) {
		let seed = [0u8; 32];
		let now = Duration::from_secs(genesis_block(Network::Testnet).header.time as u64);
		let keys_manager = Arc::new(KeysManager::new(&seed, now.as_secs(), now.subsec_micros()));

		let mut handles = Vec::new();
		let mut stops = Vec::new();
		for _ in 1..5 {
			let keys_manager_clone = Arc::clone(&keys_manager);
			let (stop_sender, stop_receiver) = mpsc::channel();
			let handle = thread::spawn(move || {
				loop {
					keys_manager_clone.get_secure_random_bytes();
					match stop_receiver.try_recv() {
						Ok(_) | Err(TryRecvError::Disconnected) => {
							println!("Terminating.");
							break;
						}
						Err(TryRecvError::Empty) => {}
					}
				}
			});
			handles.push(handle);
			stops.push(stop_sender);
		}

		bench.iter(|| {
			for _ in 1..100 {
				keys_manager.get_secure_random_bytes();
			}
		});

		for stop in stops {
			let _ = stop.send(());
		}
		for handle in handles {
			handle.join().unwrap();
		}
	}

}