1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Structs and enums useful for constructing and reading an onion message packet.

use bitcoin::secp256k1::PublicKey;
use bitcoin::secp256k1::ecdh::SharedSecret;

use ln::msgs::DecodeError;
use ln::onion_utils;
use super::blinded_route::{BlindedRoute, ForwardTlvs, ReceiveTlvs};
use util::chacha20poly1305rfc::{ChaChaPolyReadAdapter, ChaChaPolyWriteAdapter};
use util::ser::{BigSize, FixedLengthReader, LengthRead, LengthReadable, LengthReadableArgs, Readable, ReadableArgs, Writeable, Writer};

use core::cmp;
use io::{self, Read};
use prelude::*;

// Per the spec, an onion message packet's `hop_data` field length should be
// SMALL_PACKET_HOP_DATA_LEN if it fits, else BIG_PACKET_HOP_DATA_LEN if it fits.
pub(super) const SMALL_PACKET_HOP_DATA_LEN: usize = 1300;
pub(super) const BIG_PACKET_HOP_DATA_LEN: usize = 32768;

#[derive(Clone, Debug, PartialEq)]
pub(crate) struct Packet {
	pub(super) version: u8,
	pub(super) public_key: PublicKey,
	// Unlike the onion packets used for payments, onion message packets can have payloads greater
	// than 1300 bytes.
	// TODO: if 1300 ends up being the most common size, optimize this to be:
	// enum { ThirteenHundred([u8; 1300]), VarLen(Vec<u8>) }
	pub(super) hop_data: Vec<u8>,
	pub(super) hmac: [u8; 32],
}

impl onion_utils::Packet for Packet {
	type Data = Vec<u8>;
	fn new(public_key: PublicKey, hop_data: Vec<u8>, hmac: [u8; 32]) -> Packet {
		Self {
			version: 0,
			public_key,
			hop_data,
			hmac,
		}
	}
}

impl Writeable for Packet {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.version.write(w)?;
		self.public_key.write(w)?;
		w.write_all(&self.hop_data)?;
		self.hmac.write(w)?;
		Ok(())
	}
}

impl LengthReadable for Packet {
	fn read<R: LengthRead>(r: &mut R) -> Result<Self, DecodeError> {
		const READ_BUFFER_SIZE: usize = 4096;

		let version = Readable::read(r)?;
		let public_key = Readable::read(r)?;

		let mut hop_data = Vec::new();
		let hop_data_len = r.total_bytes().saturating_sub(66) as usize; // 1 (version) + 33 (pubkey) + 32 (HMAC) = 66
		let mut read_idx = 0;
		while read_idx < hop_data_len {
			let mut read_buffer = [0; READ_BUFFER_SIZE];
			let read_amt = cmp::min(hop_data_len - read_idx, READ_BUFFER_SIZE);
			r.read_exact(&mut read_buffer[..read_amt])?;
			hop_data.extend_from_slice(&read_buffer[..read_amt]);
			read_idx += read_amt;
		}

		let hmac = Readable::read(r)?;
		Ok(Packet {
			version,
			public_key,
			hop_data,
			hmac,
		})
	}
}

/// Onion message payloads contain "control" TLVs and "data" TLVs. Control TLVs are used to route
/// the onion message from hop to hop and for path verification, whereas data TLVs contain the onion
/// message content itself, such as an invoice request.
pub(super) enum Payload {
	/// This payload is for an intermediate hop.
	Forward(ForwardControlTlvs),
	/// This payload is for the final hop.
	Receive {
		control_tlvs: ReceiveControlTlvs,
		reply_path: Option<BlindedRoute>,
		// Coming soon:
		// message: Message,
	}
}

// Coming soon:
// enum Message {
// 	InvoiceRequest(InvoiceRequest),
// 	Invoice(Invoice),
//	InvoiceError(InvoiceError),
//	CustomMessage<T>,
// }

/// Forward control TLVs in their blinded and unblinded form.
pub(super) enum ForwardControlTlvs {
	/// If we're sending to a blinded route, the node that constructed the blinded route has provided
	/// this hop's control TLVs, already encrypted into bytes.
	Blinded(Vec<u8>),
	/// If we're constructing an onion message hop through an intermediate unblinded node, we'll need
	/// to construct the intermediate hop's control TLVs in their unblinded state to avoid encoding
	/// them into an intermediate Vec. See [`super::blinded_route::ForwardTlvs`] for more info.
	Unblinded(ForwardTlvs),
}

/// Receive control TLVs in their blinded and unblinded form.
pub(super) enum ReceiveControlTlvs {
	/// See [`ForwardControlTlvs::Blinded`].
	Blinded(Vec<u8>),
	/// See [`ForwardControlTlvs::Unblinded`] and [`super::blinded_route::ReceiveTlvs`].
	Unblinded(ReceiveTlvs),
}

// Uses the provided secret to simultaneously encode and encrypt the unblinded control TLVs.
impl Writeable for (Payload, [u8; 32]) {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		match &self.0 {
			Payload::Forward(ForwardControlTlvs::Blinded(encrypted_bytes)) => {
				encode_varint_length_prefixed_tlv!(w, {
					(4, encrypted_bytes, vec_type)
				})
			},
			Payload::Receive {
				control_tlvs: ReceiveControlTlvs::Blinded(encrypted_bytes), reply_path
			} => {
				encode_varint_length_prefixed_tlv!(w, {
					(2, reply_path, option),
					(4, encrypted_bytes, vec_type)
				})
			},
			Payload::Forward(ForwardControlTlvs::Unblinded(control_tlvs)) => {
				let write_adapter = ChaChaPolyWriteAdapter::new(self.1, &control_tlvs);
				encode_varint_length_prefixed_tlv!(w, {
					(4, write_adapter, required)
				})
			},
			Payload::Receive {
				control_tlvs: ReceiveControlTlvs::Unblinded(control_tlvs), reply_path,
			} => {
				let write_adapter = ChaChaPolyWriteAdapter::new(self.1, &control_tlvs);
				encode_varint_length_prefixed_tlv!(w, {
					(2, reply_path, option),
					(4, write_adapter, required)
				})
			},
		}
		Ok(())
	}
}

// Uses the provided secret to simultaneously decode and decrypt the control TLVs.
impl ReadableArgs<SharedSecret> for Payload {
	fn read<R: Read>(r: &mut R, encrypted_tlvs_ss: SharedSecret) -> Result<Self, DecodeError> {
		let v: BigSize = Readable::read(r)?;
		let mut rd = FixedLengthReader::new(r, v.0);
		let mut reply_path: Option<BlindedRoute> = None;
		let mut read_adapter: Option<ChaChaPolyReadAdapter<ControlTlvs>> = None;
		let rho = onion_utils::gen_rho_from_shared_secret(&encrypted_tlvs_ss.secret_bytes());
		decode_tlv_stream!(&mut rd, {
			(2, reply_path, option),
			(4, read_adapter, (option: LengthReadableArgs, rho))
		});
		rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;

		match read_adapter {
			None => return Err(DecodeError::InvalidValue),
			Some(ChaChaPolyReadAdapter { readable: ControlTlvs::Forward(tlvs)}) => {
				Ok(Payload::Forward(ForwardControlTlvs::Unblinded(tlvs)))
			},
			Some(ChaChaPolyReadAdapter { readable: ControlTlvs::Receive(tlvs)}) => {
				Ok(Payload::Receive { control_tlvs: ReceiveControlTlvs::Unblinded(tlvs), reply_path })
			},
		}
	}
}

/// When reading a packet off the wire, we don't know a priori whether the packet is to be forwarded
/// or received. Thus we read a ControlTlvs rather than reading a ForwardControlTlvs or
/// ReceiveControlTlvs directly.
pub(super) enum ControlTlvs {
	/// This onion message is intended to be forwarded.
	Forward(ForwardTlvs),
	/// This onion message is intended to be received.
	Receive(ReceiveTlvs),
}

impl Readable for ControlTlvs {
	fn read<R: Read>(mut r: &mut R) -> Result<Self, DecodeError> {
		let mut _padding: Option<Padding> = None;
		let mut _short_channel_id: Option<u64> = None;
		let mut next_node_id: Option<PublicKey> = None;
		let mut path_id: Option<[u8; 32]> = None;
		let mut next_blinding_override: Option<PublicKey> = None;
		decode_tlv_stream!(&mut r, {
			(1, _padding, option),
			(2, _short_channel_id, option),
			(4, next_node_id, option),
			(6, path_id, option),
			(8, next_blinding_override, option),
		});

		let valid_fwd_fmt  = next_node_id.is_some() && path_id.is_none();
		let valid_recv_fmt = next_node_id.is_none() && next_blinding_override.is_none();

		let payload_fmt = if valid_fwd_fmt {
			ControlTlvs::Forward(ForwardTlvs {
				next_node_id: next_node_id.unwrap(),
				next_blinding_override,
			})
		} else if valid_recv_fmt {
			ControlTlvs::Receive(ReceiveTlvs {
				path_id,
			})
		} else {
			return Err(DecodeError::InvalidValue)
		};

		Ok(payload_fmt)
	}
}

/// Reads padding to the end, ignoring what's read.
pub(crate) struct Padding {}
impl Readable for Padding {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
		loop {
			let mut buf = [0; 8192];
			if reader.read(&mut buf[..])? == 0 { break; }
		}
		Ok(Self {})
	}
}