1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! keysinterface provides keys into rust-lightning and defines some useful enums which describe
//! spendable on-chain outputs which the user owns and is responsible for using just as any other
//! on-chain output which is theirs.

use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
use bitcoin::util::sighash;

use bitcoin::bech32::u5;
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::HashEngine as Sha256State;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::WPubkeyHash;

use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
use bitcoin::secp256k1::ecdh::SharedSecret;
use bitcoin::secp256k1::ecdsa::RecoverableSignature;
use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};

use util::{byte_utils, transaction_utils};
use util::crypto::{hkdf_extract_expand_twice, sign};
use util::ser::{Writeable, Writer, Readable, ReadableArgs};

use chain::transaction::OutPoint;
use ln::{chan_utils, PaymentPreimage};
use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
use ln::msgs::UnsignedChannelAnnouncement;
use ln::script::ShutdownScript;

use prelude::*;
use core::sync::atomic::{AtomicUsize, Ordering};
use io::{self, Error};
use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
use util::invoice::construct_invoice_preimage;

/// Used as initial key material, to be expanded into multiple secret keys (but not to be used
/// directly). This is used within LDK to encrypt/decrypt inbound payment data.
/// (C-not exported) as we just use [u8; 32] directly
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct KeyMaterial(pub [u8; 32]);

/// Information about a spendable output to a P2WSH script. See
/// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
#[derive(Clone, Debug, PartialEq)]
pub struct DelayedPaymentOutputDescriptor {
	/// The outpoint which is spendable
	pub outpoint: OutPoint,
	/// Per commitment point to derive delayed_payment_key by key holder
	pub per_commitment_point: PublicKey,
	/// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
	/// the witness_script.
	pub to_self_delay: u16,
	/// The output which is referenced by the given outpoint
	pub output: TxOut,
	/// The revocation point specific to the commitment transaction which was broadcast. Used to
	/// derive the witnessScript for this output.
	pub revocation_pubkey: PublicKey,
	/// Arbitrary identification information returned by a call to
	/// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
	/// the channel to spend the output.
	pub channel_keys_id: [u8; 32],
	/// The value of the channel which this output originated from, possibly indirectly.
	pub channel_value_satoshis: u64,
}
impl DelayedPaymentOutputDescriptor {
	/// The maximum length a well-formed witness spending one of these should have.
	// Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
	// redeemscript push length.
	pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
}

impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
	(0, outpoint, required),
	(2, per_commitment_point, required),
	(4, to_self_delay, required),
	(6, output, required),
	(8, revocation_pubkey, required),
	(10, channel_keys_id, required),
	(12, channel_value_satoshis, required),
});

/// Information about a spendable output to our "payment key". See
/// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
#[derive(Clone, Debug, PartialEq)]
pub struct StaticPaymentOutputDescriptor {
	/// The outpoint which is spendable
	pub outpoint: OutPoint,
	/// The output which is referenced by the given outpoint
	pub output: TxOut,
	/// Arbitrary identification information returned by a call to
	/// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
	/// the channel to spend the output.
	pub channel_keys_id: [u8; 32],
	/// The value of the channel which this transactions spends.
	pub channel_value_satoshis: u64,
}
impl StaticPaymentOutputDescriptor {
	/// The maximum length a well-formed witness spending one of these should have.
	// Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
	// redeemscript push length.
	pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
}
impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
	(0, outpoint, required),
	(2, output, required),
	(4, channel_keys_id, required),
	(6, channel_value_satoshis, required),
});

/// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
/// claim at any point in the future) an event is generated which you must track and be able to
/// spend on-chain. The information needed to do this is provided in this enum, including the
/// outpoint describing which txid and output index is available, the full output which exists at
/// that txid/index, and any keys or other information required to sign.
#[derive(Clone, Debug, PartialEq)]
pub enum SpendableOutputDescriptor {
	/// An output to a script which was provided via KeysInterface directly, either from
	/// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
	/// how to spend it. No secret keys are provided as rust-lightning was never given any key.
	/// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
	/// on-chain using the payment preimage or after it has timed out.
	StaticOutput {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The output which is referenced by the given outpoint.
		output: TxOut,
	},
	/// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
	///
	/// The witness in the spending input should be:
	/// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
	///
	/// Note that the nSequence field in the spending input must be set to to_self_delay
	/// (which means the transaction is not broadcastable until at least to_self_delay
	/// blocks after the outpoint confirms).
	///
	/// These are generally the result of a "revocable" output to us, spendable only by us unless
	/// it is an output from an old state which we broadcast (which should never happen).
	///
	/// To derive the delayed_payment key which is used to sign for this input, you must pass the
	/// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
	/// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
	/// chan_utils::derive_private_key. The public key can be generated without the secret key
	/// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
	/// Sign::pubkeys().
	///
	/// To derive the revocation_pubkey provided here (which is used in the witness
	/// script generation), you must pass the counterparty revocation_basepoint (which appears in the
	/// call to Sign::ready_channel) and the provided per_commitment point
	/// to chan_utils::derive_public_revocation_key.
	///
	/// The witness script which is hashed and included in the output script_pubkey may be
	/// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
	/// (derived as above), and the to_self_delay contained here to
	/// chan_utils::get_revokeable_redeemscript.
	DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
	/// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
	/// corresponds to the public key in Sign::pubkeys().payment_point).
	/// The witness in the spending input, is, thus, simply:
	/// <BIP 143 signature> <payment key>
	///
	/// These are generally the result of our counterparty having broadcast the current state,
	/// allowing us to claim the non-HTLC-encumbered outputs immediately.
	StaticPaymentOutput(StaticPaymentOutputDescriptor),
}

impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
	(0, StaticOutput) => {
		(0, outpoint, required),
		(2, output, required),
	},
;
	(1, DelayedPaymentOutput),
	(2, StaticPaymentOutput),
);

/// A trait to sign lightning channel transactions as described in BOLT 3.
///
/// Signing services could be implemented on a hardware wallet. In this case,
/// the current Sign would be a front-end on top of a communication
/// channel connected to your secure device and lightning key material wouldn't
/// reside on a hot server. Nevertheless, a this deployment would still need
/// to trust the ChannelManager to avoid loss of funds as this latest component
/// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
///
/// A more secure iteration would be to use hashlock (or payment points) to pair
/// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
/// at the price of more state and computation on the hardware wallet side. In the future,
/// we are looking forward to design such interface.
///
/// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
/// to act, as liveness and breach reply correctness are always going to be hard requirements
/// of LN security model, orthogonal of key management issues.
// TODO: We should remove Clone by instead requesting a new Sign copy when we create
// ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
pub trait BaseSign {
	/// Gets the per-commitment point for a specific commitment number
	///
	/// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
	fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
	/// Gets the commitment secret for a specific commitment number as part of the revocation process
	///
	/// An external signer implementation should error here if the commitment was already signed
	/// and should refuse to sign it in the future.
	///
	/// May be called more than once for the same index.
	///
	/// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
	// TODO: return a Result so we can signal a validation error
	fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
	/// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
	///
	/// This is required in order for the signer to make sure that releasing a commitment
	/// secret won't leave us without a broadcastable holder transaction.
	/// Policy checks should be implemented in this function, including checking the amount
	/// sent to us and checking the HTLCs.
	///
	/// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
	/// A validating signer should ensure that an HTLC output is removed only when the matching
	/// preimage is provided, or when the value to holder is restored.
	///
	/// NOTE: all the relevant preimages will be provided, but there may also be additional
	/// irrelevant or duplicate preimages.
	fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
	/// Gets the holder's channel public keys and basepoints
	fn pubkeys(&self) -> &ChannelPublicKeys;
	/// Gets an arbitrary identifier describing the set of keys which are provided back to you in
	/// some SpendableOutputDescriptor types. This should be sufficient to identify this
	/// Sign object uniquely and lookup or re-derive its keys.
	fn channel_keys_id(&self) -> [u8; 32];

	/// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
	///
	/// Note that if signing fails or is rejected, the channel will be force-closed.
	///
	/// Policy checks should be implemented in this function, including checking the amount
	/// sent to us and checking the HTLCs.
	///
	/// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
	/// A validating signer should ensure that an HTLC output is removed only when the matching
	/// preimage is provided, or when the value to holder is restored.
	///
	/// NOTE: all the relevant preimages will be provided, but there may also be additional
	/// irrelevant or duplicate preimages.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
	/// Validate the counterparty's revocation.
	///
	/// This is required in order for the signer to make sure that the state has moved
	/// forward and it is safe to sign the next counterparty commitment.
	fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;

	/// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
	/// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
	/// latest commitment_tx when we initiate a force-close.
	/// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
	/// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
	/// the latest.
	/// This may be called multiple times for the same transaction.
	///
	/// An external signer implementation should check that the commitment has not been revoked.
	///
	/// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	// TODO: Key derivation failure should panic rather than Err
	fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
	/// transactions which will be broadcasted later, after the channel has moved on to a newer
	/// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
	/// get called once.
	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Create a signature for the given input in a transaction spending an HTLC transaction output
	/// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiple outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiple times for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// per_commitment_key is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder revocation_secret to do
	/// so).
	fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Create a signature for the given input in a transaction spending a commitment transaction
	/// HTLC output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiple outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiple times for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// per_commitment_key is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder revocation_secret to do
	/// so).
	///
	/// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
	/// (which is committed to in the BIP 143 signatures).
	fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
	/// transaction, either offered or received.
	///
	/// Such a transaction may claim multiples offered outputs at same time if we know the
	/// preimage for each when we create it, but only the input at index `input` should be
	/// signed for here. It may be called multiple times for same output(s) if a fee-bump is
	/// needed with regards to an upcoming timelock expiration.
	///
	/// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
	/// outputs.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// Per_commitment_point is the dynamic point corresponding to the channel state
	/// detected onchain. It has been generated by our counterparty and is used to derive
	/// channel state keys, which are then included in the witness script and committed to in the
	/// BIP 143 signature.
	fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Create a signature for a (proposed) closing transaction.
	///
	/// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
	/// chosen to forgo their output as dust.
	fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;

	/// Signs a channel announcement message with our funding key and our node secret key (aka
	/// node_id or network_key), proving it comes from one of the channel participants.
	///
	/// The first returned signature should be from our node secret key, the second from our
	/// funding key.
	///
	/// Note that if this fails or is rejected, the channel will not be publicly announced and
	/// our counterparty may (though likely will not) close the channel on us for violating the
	/// protocol.
	fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
		-> Result<(Signature, Signature), ()>;

	/// Set the counterparty static channel data, including basepoints,
	/// counterparty_selected/holder_selected_contest_delay and funding outpoint.
	/// This is done as soon as the funding outpoint is known.  Since these are static channel data,
	/// they MUST NOT be allowed to change to different values once set.
	///
	/// channel_parameters.is_populated() MUST be true.
	///
	/// We bind holder_selected_contest_delay late here for API convenience.
	///
	/// Will be called before any signatures are applied.
	fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
}

/// A cloneable signer.
///
/// Although we require signers to be cloneable, it may be useful for developers to be able to use
/// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
/// which implies Sized, into this derived trait.
pub trait Sign: BaseSign + Writeable + Clone {
}

/// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node
/// secret key should be used to sign the invoice.
pub enum Recipient {
	/// The invoice should be signed with the local node secret key.
	Node,
	/// The invoice should be signed with the phantom node secret key. This secret key must be the
	/// same for all nodes participating in the [phantom node payment].
	///
	/// [phantom node payment]: PhantomKeysManager
	PhantomNode,
}

/// A trait to describe an object which can get user secrets and key material.
pub trait KeysInterface {
	/// A type which implements Sign which will be returned by get_channel_signer.
	type Signer : Sign;

	/// Get node secret key based on the provided [`Recipient`].
	///
	/// The node_id/network_key is the public key that corresponds to this secret key.
	///
	/// This method must return the same value each time it is called with a given `Recipient`
	/// parameter.
	fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
	/// Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if
	/// one is provided. Note that this tweak can be applied to `other_key` instead of our node
	/// secret, though this is less efficient.
	///
	/// [`node secret`]: Self::get_node_secret
	fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
	/// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
	///
	/// This method should return a different value each time it is called, to avoid linking
	/// on-chain funds across channels as controlled to the same user.
	fn get_destination_script(&self) -> Script;
	/// Get a script pubkey which we will send funds to when closing a channel.
	///
	/// This method should return a different value each time it is called, to avoid linking
	/// on-chain funds across channels as controlled to the same user.
	fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
	/// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
	/// restarted with some stale data!
	///
	/// This method must return a different value each time it is called.
	fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
	/// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
	/// onion packets and for temporary channel IDs. There is no requirement that these be
	/// persisted anywhere, though they must be unique across restarts.
	///
	/// This method must return a different value each time it is called.
	fn get_secure_random_bytes(&self) -> [u8; 32];

	/// Reads a `Signer` for this `KeysInterface` from the given input stream.
	/// This is only called during deserialization of other objects which contain
	/// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
	/// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
	/// contain no versioning scheme. You may wish to include your own version prefix and ensure
	/// you've read all of the provided bytes to ensure no corruption occurred.
	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;

	/// Sign an invoice.
	/// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
	/// this trait to parse the invoice and make sure they're signing what they expect, rather than
	/// blindly signing the hash.
	/// The hrp is ascii bytes, while the invoice data is base32.
	///
	/// The secret key used to sign the invoice is dependent on the [`Recipient`].
	fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;

	/// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
	///
	/// If the implementor of this trait supports [phantom node payments], then every node that is
	/// intended to be included in the phantom invoice route hints must return the same value from
	/// this method.
	//  This is because LDK avoids storing inbound payment data by encrypting payment data in the
	//  payment hash and/or payment secret, therefore for a payment to be receivable by multiple
	//  nodes, they must share the key that encrypts this payment data.
	///
	/// This method must return the same value each time it is called.
	///
	/// [phantom node payments]: PhantomKeysManager
	fn get_inbound_payment_key_material(&self) -> KeyMaterial;
}

#[derive(Clone)]
/// A simple implementation of Sign that just keeps the private keys in memory.
///
/// This implementation performs no policy checks and is insufficient by itself as
/// a secure external signer.
pub struct InMemorySigner {
	/// Private key of anchor tx
	pub funding_key: SecretKey,
	/// Holder secret key for blinded revocation pubkey
	pub revocation_base_key: SecretKey,
	/// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
	pub payment_key: SecretKey,
	/// Holder secret key used in HTLC tx
	pub delayed_payment_base_key: SecretKey,
	/// Holder htlc secret key used in commitment tx htlc outputs
	pub htlc_base_key: SecretKey,
	/// Commitment seed
	pub commitment_seed: [u8; 32],
	/// Holder public keys and basepoints
	pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
	/// Private key of our node secret, used for signing channel announcements
	node_secret: SecretKey,
	/// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
	channel_parameters: Option<ChannelTransactionParameters>,
	/// The total value of this channel
	channel_value_satoshis: u64,
	/// Key derivation parameters
	channel_keys_id: [u8; 32],
}

impl InMemorySigner {
	/// Create a new InMemorySigner
	pub fn new<C: Signing>(
		secp_ctx: &Secp256k1<C>,
		node_secret: SecretKey,
		funding_key: SecretKey,
		revocation_base_key: SecretKey,
		payment_key: SecretKey,
		delayed_payment_base_key: SecretKey,
		htlc_base_key: SecretKey,
		commitment_seed: [u8; 32],
		channel_value_satoshis: u64,
		channel_keys_id: [u8; 32]) -> InMemorySigner {
		let holder_channel_pubkeys =
			InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		InMemorySigner {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			node_secret,
			channel_value_satoshis,
			holder_channel_pubkeys,
			channel_parameters: None,
			channel_keys_id,
		}
	}

	fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
	                               funding_key: &SecretKey,
	                               revocation_base_key: &SecretKey,
	                               payment_key: &SecretKey,
	                               delayed_payment_base_key: &SecretKey,
	                               htlc_base_key: &SecretKey) -> ChannelPublicKeys {
		let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
		ChannelPublicKeys {
			funding_pubkey: from_secret(&funding_key),
			revocation_basepoint: from_secret(&revocation_base_key),
			payment_point: from_secret(&payment_key),
			delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
			htlc_basepoint: from_secret(&htlc_base_key),
		}
	}

	/// Counterparty pubkeys.
	/// Will panic if ready_channel wasn't called.
	pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }

	/// The contest_delay value specified by our counterparty and applied on holder-broadcastable
	/// transactions, ie the amount of time that we have to wait to recover our funds if we
	/// broadcast a transaction.
	/// Will panic if ready_channel wasn't called.
	pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }

	/// The contest_delay value specified by us and applied on transactions broadcastable
	/// by our counterparty, ie the amount of time that they have to wait to recover their funds
	/// if they broadcast a transaction.
	/// Will panic if ready_channel wasn't called.
	pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }

	/// Whether the holder is the initiator
	/// Will panic if ready_channel wasn't called.
	pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }

	/// Funding outpoint
	/// Will panic if ready_channel wasn't called.
	pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }

	/// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
	/// building transactions.
	///
	/// Will panic if ready_channel wasn't called.
	pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
		self.channel_parameters.as_ref().unwrap()
	}

	/// Whether anchors should be used.
	/// Will panic if ready_channel wasn't called.
	pub fn opt_anchors(&self) -> bool {
		self.get_channel_parameters().opt_anchors.is_some()
	}

	/// Sign the single input of spend_tx at index `input_idx` which spends the output
	/// described by descriptor, returning the witness stack for the input.
	///
	/// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
	/// is not spending the outpoint described by `descriptor.outpoint`,
	/// or if an output descriptor script_pubkey does not match the one we can spend.
	pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
		// TODO: We really should be taking the SigHashCache as a parameter here instead of
		// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
		// so that we can check them. This requires upstream rust-bitcoin changes (as well as
		// bindings updates to support SigHashCache objects).
		if spend_tx.input.len() <= input_idx { return Err(()); }
		if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
		if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }

		let remotepubkey = self.pubkeys().payment_point;
		let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
		let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
		let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
		let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();

		if payment_script != descriptor.output.script_pubkey  { return Err(()); }

		let mut witness = Vec::with_capacity(2);
		witness.push(remotesig.serialize_der().to_vec());
		witness[0].push(EcdsaSighashType::All as u8);
		witness.push(remotepubkey.serialize().to_vec());
		Ok(witness)
	}

	/// Sign the single input of spend_tx at index `input_idx` which spends the output
	/// described by descriptor, returning the witness stack for the input.
	///
	/// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
	/// is not spending the outpoint described by `descriptor.outpoint`, does not have a
	/// sequence set to `descriptor.to_self_delay`, or if an output descriptor
	/// script_pubkey does not match the one we can spend.
	pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
		// TODO: We really should be taking the SigHashCache as a parameter here instead of
		// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
		// so that we can check them. This requires upstream rust-bitcoin changes (as well as
		// bindings updates to support SigHashCache objects).
		if spend_tx.input.len() <= input_idx { return Err(()); }
		if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
		if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
		if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }

		let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
			.expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
		let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
		let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
		let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
		let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
		let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();

		if descriptor.output.script_pubkey != payment_script { return Err(()); }

		let mut witness = Vec::with_capacity(3);
		witness.push(local_delayedsig.serialize_der().to_vec());
		witness[0].push(EcdsaSighashType::All as u8);
		witness.push(vec!()); //MINIMALIF
		witness.push(witness_script.clone().into_bytes());
		Ok(witness)
	}
}

impl BaseSign for InMemorySigner {
	fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
		let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
		PublicKey::from_secret_key(secp_ctx, &commitment_secret)
	}

	fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
		chan_utils::build_commitment_secret(&self.commitment_seed, idx)
	}

	fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
		Ok(())
	}

	fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
	fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }

	fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let trusted_tx = commitment_tx.trust();
		let keys = trusted_tx.keys();

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);

		let built_tx = trusted_tx.built_transaction();
		let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let commitment_txid = built_tx.txid;

		let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
		for htlc in commitment_tx.htlcs() {
			let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
			let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
			let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
			let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
			let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
			htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
		}

		Ok((commitment_sig, htlc_sigs))
	}

	fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
		Ok(())
	}

	fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		let trusted_tx = commitment_tx.trust();
		let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let channel_parameters = self.get_channel_parameters();
		let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
		Ok((sig, htlc_sigs))
	}

	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		let trusted_tx = commitment_tx.trust();
		let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
		let channel_parameters = self.get_channel_parameters();
		let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
		Ok((sig, htlc_sigs))
	}

	fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
		let witness_script = {
			let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
			chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
		};
		let mut sighash_parts = sighash::SighashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
		return Ok(sign(secp_ctx, &sighash, &revocation_key))
	}

	fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
		let witness_script = {
			let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
			let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
			chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
		};
		let mut sighash_parts = sighash::SighashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
		return Ok(sign(secp_ctx, &sighash, &revocation_key))
	}

	fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
			let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
				if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
					if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
						chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
					} else { return Err(()) }
				} else { return Err(()) }
			} else { return Err(()) };
			let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
			let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
			return Ok(sign(secp_ctx, &sighash, &htlc_key))
		}
		Err(())
	}

	fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
		Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
	}

	fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
	-> Result<(Signature, Signature), ()> {
		let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
		Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key)))
	}

	fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
		assert!(self.channel_parameters.is_none(), "Acceptance already noted");
		assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
		self.channel_parameters = Some(channel_parameters.clone());
	}
}

const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;

impl Sign for InMemorySigner {}

impl Writeable for InMemorySigner {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);

		self.funding_key.write(writer)?;
		self.revocation_base_key.write(writer)?;
		self.payment_key.write(writer)?;
		self.delayed_payment_base_key.write(writer)?;
		self.htlc_base_key.write(writer)?;
		self.commitment_seed.write(writer)?;
		self.channel_parameters.write(writer)?;
		self.channel_value_satoshis.write(writer)?;
		self.channel_keys_id.write(writer)?;

		write_tlv_fields!(writer, {});

		Ok(())
	}
}

impl ReadableArgs<SecretKey> for InMemorySigner {
	fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
		let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);

		let funding_key = Readable::read(reader)?;
		let revocation_base_key = Readable::read(reader)?;
		let payment_key = Readable::read(reader)?;
		let delayed_payment_base_key = Readable::read(reader)?;
		let htlc_base_key = Readable::read(reader)?;
		let commitment_seed = Readable::read(reader)?;
		let counterparty_channel_data = Readable::read(reader)?;
		let channel_value_satoshis = Readable::read(reader)?;
		let secp_ctx = Secp256k1::signing_only();
		let holder_channel_pubkeys =
			InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		let keys_id = Readable::read(reader)?;

		read_tlv_fields!(reader, {});

		Ok(InMemorySigner {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			node_secret,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			channel_parameters: counterparty_channel_data,
			channel_keys_id: keys_id,
		})
	}
}

/// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
/// and derives keys from that.
///
/// Your node_id is seed/0'
/// ChannelMonitor closes may use seed/1'
/// Cooperative closes may use seed/2'
/// The two close keys may be needed to claim on-chain funds!
///
/// This struct cannot be used for nodes that wish to support receiving phantom payments;
/// [`PhantomKeysManager`] must be used instead.
///
/// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
/// previously issued invoices and attempts to pay previous invoices will fail.
pub struct KeysManager {
	secp_ctx: Secp256k1<secp256k1::All>,
	node_secret: SecretKey,
	inbound_payment_key: KeyMaterial,
	destination_script: Script,
	shutdown_pubkey: PublicKey,
	channel_master_key: ExtendedPrivKey,
	channel_child_index: AtomicUsize,

	rand_bytes_master_key: ExtendedPrivKey,
	rand_bytes_child_index: AtomicUsize,
	rand_bytes_unique_start: Sha256State,

	seed: [u8; 32],
	starting_time_secs: u64,
	starting_time_nanos: u32,
}

impl KeysManager {
	/// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
	/// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
	/// starting_time isn't strictly required to actually be a time, but it must absolutely,
	/// without a doubt, be unique to this instance. ie if you start multiple times with the same
	/// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
	/// simply use the current time (with very high precision).
	///
	/// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
	/// obviously, starting_time should be unique every time you reload the library - it is only
	/// used to generate new ephemeral key data (which will be stored by the individual channel if
	/// necessary).
	///
	/// Note that the seed is required to recover certain on-chain funds independent of
	/// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
	/// channel, and some on-chain during-closing funds.
	///
	/// Note that until the 0.1 release there is no guarantee of backward compatibility between
	/// versions. Once the library is more fully supported, the docs will be updated to include a
	/// detailed description of the guarantee.
	pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
		let secp_ctx = Secp256k1::new();
		// Note that when we aren't serializing the key, network doesn't matter
		match ExtendedPrivKey::new_master(Network::Testnet, seed) {
			Ok(master_key) => {
				let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
				let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
					Ok(destination_key) => {
						let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
						Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
						              .push_slice(&wpubkey_hash.into_inner())
						              .into_script()
					},
					Err(_) => panic!("Your RNG is busted"),
				};
				let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
					Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
					Err(_) => panic!("Your RNG is busted"),
				};
				let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
				let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
				let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
				let mut inbound_pmt_key_bytes = [0; 32];
				inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);

				let mut rand_bytes_unique_start = Sha256::engine();
				rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
				rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
				rand_bytes_unique_start.input(seed);

				let mut res = KeysManager {
					secp_ctx,
					node_secret,
					inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),

					destination_script,
					shutdown_pubkey,

					channel_master_key,
					channel_child_index: AtomicUsize::new(0),

					rand_bytes_master_key,
					rand_bytes_child_index: AtomicUsize::new(0),
					rand_bytes_unique_start,

					seed: *seed,
					starting_time_secs,
					starting_time_nanos,
				};
				let secp_seed = res.get_secure_random_bytes();
				res.secp_ctx.seeded_randomize(&secp_seed);
				res
			},
			Err(_) => panic!("Your rng is busted"),
		}
	}
	/// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
	///
	/// Key derivation parameters are accessible through a per-channel secrets
	/// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
	/// onchain output detection for which a corresponding delayed_payment_key must be derived.
	pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
		let chan_id = byte_utils::slice_to_be64(&params[0..8]);
		assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
		let mut unique_start = Sha256::engine();
		unique_start.input(params);
		unique_start.input(&self.seed);

		// We only seriously intend to rely on the channel_master_key for true secure
		// entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
		// starting_time provided in the constructor) to be unique.
		let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
		unique_start.input(&child_privkey.private_key[..]);

		let seed = Sha256::from_engine(unique_start).into_inner();

		let commitment_seed = {
			let mut sha = Sha256::engine();
			sha.input(&seed);
			sha.input(&b"commitment seed"[..]);
			Sha256::from_engine(sha).into_inner()
		};
		macro_rules! key_step {
			($info: expr, $prev_key: expr) => {{
				let mut sha = Sha256::engine();
				sha.input(&seed);
				sha.input(&$prev_key[..]);
				sha.input(&$info[..]);
				SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
			}}
		}
		let funding_key = key_step!(b"funding key", commitment_seed);
		let revocation_base_key = key_step!(b"revocation base key", funding_key);
		let payment_key = key_step!(b"payment key", revocation_base_key);
		let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
		let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);

		InMemorySigner::new(
			&self.secp_ctx,
			self.node_secret,
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			params.clone()
		)
	}

	/// Creates a Transaction which spends the given descriptors to the given outputs, plus an
	/// output to the given change destination (if sufficient change value remains). The
	/// transaction will have a feerate, at least, of the given value.
	///
	/// Returns `Err(())` if the output value is greater than the input value minus required fee,
	/// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
	/// does not match the one we can spend.
	///
	/// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
	///
	/// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
	/// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
	pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
		let mut input = Vec::new();
		let mut input_value = 0;
		let mut witness_weight = 0;
		let mut output_set = HashSet::with_capacity(descriptors.len());
		for outp in descriptors {
			match outp {
				SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
					input.push(TxIn {
						previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: Sequence::ZERO,
						witness: Witness::new(),
					});
					witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
					input_value += descriptor.output.value;
					if !output_set.insert(descriptor.outpoint) { return Err(()); }
				},
				SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
					input.push(TxIn {
						previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: Sequence(descriptor.to_self_delay as u32),
						witness: Witness::new(),
					});
					witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
					input_value += descriptor.output.value;
					if !output_set.insert(descriptor.outpoint) { return Err(()); }
				},
				SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
					input.push(TxIn {
						previous_output: outpoint.into_bitcoin_outpoint(),
						script_sig: Script::new(),
						sequence: Sequence::ZERO,
						witness: Witness::new(),
					});
					witness_weight += 1 + 73 + 34;
					input_value += output.value;
					if !output_set.insert(*outpoint) { return Err(()); }
				}
			}
			if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
		}
		let mut spend_tx = Transaction {
			version: 2,
			lock_time: PackedLockTime(0),
			input,
			output: outputs,
		};
		let expected_max_weight =
			transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;

		let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
		let mut input_idx = 0;
		for outp in descriptors {
			match outp {
				SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
					if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
						keys_cache = Some((
							self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
							descriptor.channel_keys_id));
					}
					spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
				},
				SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
					if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
						keys_cache = Some((
							self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
							descriptor.channel_keys_id));
					}
					spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
				},
				SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
					let derivation_idx = if output.script_pubkey == self.destination_script {
						1
					} else {
						2
					};
					let secret = {
						// Note that when we aren't serializing the key, network doesn't matter
						match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
							Ok(master_key) => {
								match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
									Ok(key) => key,
									Err(_) => panic!("Your RNG is busted"),
								}
							}
							Err(_) => panic!("Your rng is busted"),
						}
					};
					let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
					if derivation_idx == 2 {
						assert_eq!(pubkey.inner, self.shutdown_pubkey);
					}
					let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
					let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();

					if payment_script != output.script_pubkey { return Err(()); };

					let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
					let sig = sign(secp_ctx, &sighash, &secret.private_key);
					let mut sig_ser = sig.serialize_der().to_vec();
					sig_ser.push(EcdsaSighashType::All as u8);
					spend_tx.input[input_idx].witness.push(sig_ser);
					spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
				},
			}
			input_idx += 1;
		}

		debug_assert!(expected_max_weight >= spend_tx.weight());
		// Note that witnesses with a signature vary somewhat in size, so allow
		// `expected_max_weight` to overshoot by up to 3 bytes per input.
		debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);

		Ok(spend_tx)
	}
}

impl KeysInterface for KeysManager {
	type Signer = InMemorySigner;

	fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
		match recipient {
			Recipient::Node => Ok(self.node_secret.clone()),
			Recipient::PhantomNode => Err(())
		}
	}

	fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
		let mut node_secret = self.get_node_secret(recipient)?;
		if let Some(tweak) = tweak {
			node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
		}
		Ok(SharedSecret::new(other_key, &node_secret))
	}

	fn get_inbound_payment_key_material(&self) -> KeyMaterial {
		self.inbound_payment_key.clone()
	}

	fn get_destination_script(&self) -> Script {
		self.destination_script.clone()
	}

	fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
		ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
	}

	fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
		let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
		assert!(child_ix <= core::u32::MAX as usize);
		let mut id = [0; 32];
		id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
		id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
		id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
		self.derive_channel_keys(channel_value_satoshis, &id)
	}

	fn get_secure_random_bytes(&self) -> [u8; 32] {
		let mut sha = self.rand_bytes_unique_start.clone();

		let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key[..]);

		sha.input(b"Unique Secure Random Bytes Salt");
		Sha256::from_engine(sha).into_inner()
	}

	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
		InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
	}

	fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
		let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
		let secret = match recipient {
			Recipient::Node => self.get_node_secret(Recipient::Node)?,
			Recipient::PhantomNode => return Err(()),
		};
		Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
	}
}

/// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
/// payments.
///
/// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
/// paid to one of multiple nodes. This works because we encode the invoice route hints such that
/// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
/// itself without ever needing to forward to this fake node.
///
/// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
/// provide some fault tolerance, because payers will automatically retry paying other provided
/// nodes in the case that one node goes down.
///
/// Note that multi-path payments are not supported in phantom invoices for security reasons.
//  In the hypothetical case that we did support MPP phantom payments, there would be no way for
//  nodes to know when the full payment has been received (and the preimage can be released) without
//  significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
//  to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
//  is released too early.
//
/// Switching between this struct and [`KeysManager`] will invalidate any previously issued
/// invoices and attempts to pay previous invoices will fail.
pub struct PhantomKeysManager {
	inner: KeysManager,
	inbound_payment_key: KeyMaterial,
	phantom_secret: SecretKey,
}

impl KeysInterface for PhantomKeysManager {
	type Signer = InMemorySigner;

	fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
		match recipient {
			Recipient::Node => self.inner.get_node_secret(Recipient::Node),
			Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
		}
	}

	fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
		let mut node_secret = self.get_node_secret(recipient)?;
		if let Some(tweak) = tweak {
			node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
		}
		Ok(SharedSecret::new(other_key, &node_secret))
	}

	fn get_inbound_payment_key_material(&self) -> KeyMaterial {
		self.inbound_payment_key.clone()
	}

	fn get_destination_script(&self) -> Script {
		self.inner.get_destination_script()
	}

	fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
		self.inner.get_shutdown_scriptpubkey()
	}

	fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
		self.inner.get_channel_signer(inbound, channel_value_satoshis)
	}

	fn get_secure_random_bytes(&self) -> [u8; 32] {
		self.inner.get_secure_random_bytes()
	}

	fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
		self.inner.read_chan_signer(reader)
	}

	fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
		let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
		let secret = self.get_node_secret(recipient)?;
		Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
	}
}

impl PhantomKeysManager {
	/// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed`
	/// that is shared across all nodes that intend to participate in [phantom node payments] together.
	///
	/// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
	/// `starting_time_nanos`.
	///
	/// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
	/// same across restarts, or else inbound payments may fail.
	///
	/// [phantom node payments]: PhantomKeysManager
	pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
		let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
		let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
		Self {
			inner,
			inbound_payment_key: KeyMaterial(inbound_key),
			phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(),
		}
	}

	/// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
	pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
		self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
	}

	/// See [`KeysManager::derive_channel_keys`] for documentation on this method.
	pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
		self.inner.derive_channel_keys(channel_value_satoshis, params)
	}
}

// Ensure that BaseSign can have a vtable
#[test]
pub fn dyn_sign() {
	let _signer: Box<dyn BaseSign>;
}