1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Various utilities for building scripts and deriving keys related to channels. These are
//! largely of interest for those implementing chain::keysinterface::Sign message signing by hand.

use bitcoin::blockdata::script::{Script,Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, EcdsaSighashType};
use bitcoin::util::sighash;

use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::ripemd160::Hash as Ripemd160;
use bitcoin::hash_types::{Txid, PubkeyHash};

use ln::{PaymentHash, PaymentPreimage};
use ln::msgs::DecodeError;
use util::ser::{Readable, Writeable, Writer};
use util::{byte_utils, transaction_utils};

use bitcoin::hash_types::WPubkeyHash;
use bitcoin::secp256k1::{SecretKey, PublicKey};
use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Message};
use bitcoin::secp256k1::Error as SecpError;
use bitcoin::{secp256k1, Witness};

use io;
use prelude::*;
use core::cmp;
use ln::chan_utils;
use util::transaction_utils::sort_outputs;
use ln::channel::{INITIAL_COMMITMENT_NUMBER, ANCHOR_OUTPUT_VALUE_SATOSHI};
use core::ops::Deref;
use chain;
use util::crypto::sign;

pub(crate) const MAX_HTLCS: u16 = 483;

/// Gets the weight for an HTLC-Success transaction.
#[inline]
pub fn htlc_success_tx_weight(opt_anchors: bool) -> u64 {
	const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
	const HTLC_SUCCESS_ANCHOR_TX_WEIGHT: u64 = 706;
	if opt_anchors { HTLC_SUCCESS_ANCHOR_TX_WEIGHT } else { HTLC_SUCCESS_TX_WEIGHT }
}

/// Gets the weight for an HTLC-Timeout transaction.
#[inline]
pub fn htlc_timeout_tx_weight(opt_anchors: bool) -> u64 {
	const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
	const HTLC_TIMEOUT_ANCHOR_TX_WEIGHT: u64 = 666;
	if opt_anchors { HTLC_TIMEOUT_ANCHOR_TX_WEIGHT } else { HTLC_TIMEOUT_TX_WEIGHT }
}

#[derive(PartialEq)]
pub(crate) enum HTLCType {
	AcceptedHTLC,
	OfferedHTLC
}

impl HTLCType {
	/// Check if a given tx witnessScript len matchs one of a pre-signed HTLC
	pub(crate) fn scriptlen_to_htlctype(witness_script_len: usize) ->  Option<HTLCType> {
		if witness_script_len == 133 {
			Some(HTLCType::OfferedHTLC)
		} else if witness_script_len >= 136 && witness_script_len <= 139 {
			Some(HTLCType::AcceptedHTLC)
		} else {
			None
		}
	}
}

// Various functions for key derivation and transaction creation for use within channels. Primarily
// used in Channel and ChannelMonitor.

/// Build the commitment secret from the seed and the commitment number
pub fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
	let mut res: [u8; 32] = commitment_seed.clone();
	for i in 0..48 {
		let bitpos = 47 - i;
		if idx & (1 << bitpos) == (1 << bitpos) {
			res[bitpos / 8] ^= 1 << (bitpos & 7);
			res = Sha256::hash(&res).into_inner();
		}
	}
	res
}

/// Build a closing transaction
pub fn build_closing_transaction(to_holder_value_sat: u64, to_counterparty_value_sat: u64, to_holder_script: Script, to_counterparty_script: Script, funding_outpoint: OutPoint) -> Transaction {
	let txins = {
		let mut ins: Vec<TxIn> = Vec::new();
		ins.push(TxIn {
			previous_output: funding_outpoint,
			script_sig: Script::new(),
			sequence: 0xffffffff,
			witness: Witness::new(),
		});
		ins
	};

	let mut txouts: Vec<(TxOut, ())> = Vec::new();

	if to_counterparty_value_sat > 0 {
		txouts.push((TxOut {
			script_pubkey: to_counterparty_script,
			value: to_counterparty_value_sat
		}, ()));
	}

	if to_holder_value_sat > 0 {
		txouts.push((TxOut {
			script_pubkey: to_holder_script,
			value: to_holder_value_sat
		}, ()));
	}

	transaction_utils::sort_outputs(&mut txouts, |_, _| { cmp::Ordering::Equal }); // Ordering doesnt matter if they used our pubkey...

	let mut outputs: Vec<TxOut> = Vec::new();
	for out in txouts.drain(..) {
		outputs.push(out.0);
	}

	Transaction {
		version: 2,
		lock_time: 0,
		input: txins,
		output: outputs,
	}
}

/// Implements the per-commitment secret storage scheme from
/// [BOLT 3](https://github.com/lightning/bolts/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md#efficient-per-commitment-secret-storage).
///
/// Allows us to keep track of all of the revocation secrets of our counterparty in just 50*32 bytes
/// or so.
#[derive(Clone)]
pub struct CounterpartyCommitmentSecrets {
	old_secrets: [([u8; 32], u64); 49],
}

impl PartialEq for CounterpartyCommitmentSecrets {
	fn eq(&self, other: &Self) -> bool {
		for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
			if secret != o_secret || idx != o_idx {
				return false
			}
		}
		true
	}
}

impl CounterpartyCommitmentSecrets {
	/// Creates a new empty `CounterpartyCommitmentSecrets` structure.
	pub fn new() -> Self {
		Self { old_secrets: [([0; 32], 1 << 48); 49], }
	}

	#[inline]
	fn place_secret(idx: u64) -> u8 {
		for i in 0..48 {
			if idx & (1 << i) == (1 << i) {
				return i
			}
		}
		48
	}

	/// Returns the minimum index of all stored secrets. Note that indexes start
	/// at 1 << 48 and get decremented by one for each new secret.
	pub fn get_min_seen_secret(&self) -> u64 {
		//TODO This can be optimized?
		let mut min = 1 << 48;
		for &(_, idx) in self.old_secrets.iter() {
			if idx < min {
				min = idx;
			}
		}
		min
	}

	#[inline]
	fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
		let mut res: [u8; 32] = secret;
		for i in 0..bits {
			let bitpos = bits - 1 - i;
			if idx & (1 << bitpos) == (1 << bitpos) {
				res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
				res = Sha256::hash(&res).into_inner();
			}
		}
		res
	}

	/// Inserts the `secret` at `idx`. Returns `Ok(())` if the secret
	/// was generated in accordance with BOLT 3 and is consistent with previous secrets.
	pub fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> {
		let pos = Self::place_secret(idx);
		for i in 0..pos {
			let (old_secret, old_idx) = self.old_secrets[i as usize];
			if Self::derive_secret(secret, pos, old_idx) != old_secret {
				return Err(());
			}
		}
		if self.get_min_seen_secret() <= idx {
			return Ok(());
		}
		self.old_secrets[pos as usize] = (secret, idx);
		Ok(())
	}

	/// Returns the secret at `idx`.
	/// Returns `None` if `idx` is < [`CounterpartyCommitmentSecrets::get_min_seen_secret`].
	pub fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
		for i in 0..self.old_secrets.len() {
			if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
				return Some(Self::derive_secret(self.old_secrets[i].0, i as u8, idx))
			}
		}
		assert!(idx < self.get_min_seen_secret());
		None
	}
}

impl Writeable for CounterpartyCommitmentSecrets {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		for &(ref secret, ref idx) in self.old_secrets.iter() {
			writer.write_all(secret)?;
			writer.write_all(&byte_utils::be64_to_array(*idx))?;
		}
		write_tlv_fields!(writer, {});
		Ok(())
	}
}
impl Readable for CounterpartyCommitmentSecrets {
	fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
		let mut old_secrets = [([0; 32], 1 << 48); 49];
		for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
			*secret = Readable::read(reader)?;
			*idx = Readable::read(reader)?;
		}
		read_tlv_fields!(reader, {});
		Ok(Self { old_secrets })
	}
}

/// Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key)
/// from the base secret and the per_commitment_point.
///
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
/// generated (ie our own).
pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, SecpError> {
	let mut sha = Sha256::engine();
	sha.input(&per_commitment_point.serialize());
	sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
	let res = Sha256::from_engine(sha).into_inner();

	let mut key = base_secret.clone();
	key.add_assign(&res)?;
	Ok(key)
}

/// Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key)
/// from the base point and the per_commitment_key. This is the public equivalent of
/// derive_private_key - using only public keys to derive a public key instead of private keys.
///
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
/// generated (ie our own).
pub fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, SecpError> {
	let mut sha = Sha256::engine();
	sha.input(&per_commitment_point.serialize());
	sha.input(&base_point.serialize());
	let res = Sha256::from_engine(sha).into_inner();

	let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?);
	base_point.combine(&hashkey)
}

/// Derives a per-commitment-transaction revocation key from its constituent parts.
///
/// Only the cheating participant owns a valid witness to propagate a revoked 
/// commitment transaction, thus per_commitment_secret always come from cheater
/// and revocation_base_secret always come from punisher, which is the broadcaster
/// of the transaction spending with this key knowledge.
///
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
/// generated (ie our own).
pub fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, countersignatory_revocation_base_secret: &SecretKey) -> Result<SecretKey, SecpError> {
	let countersignatory_revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &countersignatory_revocation_base_secret);
	let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);

	let rev_append_commit_hash_key = {
		let mut sha = Sha256::engine();
		sha.input(&countersignatory_revocation_base_point.serialize());
		sha.input(&per_commitment_point.serialize());

		Sha256::from_engine(sha).into_inner()
	};
	let commit_append_rev_hash_key = {
		let mut sha = Sha256::engine();
		sha.input(&per_commitment_point.serialize());
		sha.input(&countersignatory_revocation_base_point.serialize());

		Sha256::from_engine(sha).into_inner()
	};

	let mut countersignatory_contrib = countersignatory_revocation_base_secret.clone();
	countersignatory_contrib.mul_assign(&rev_append_commit_hash_key)?;
	let mut broadcaster_contrib = per_commitment_secret.clone();
	broadcaster_contrib.mul_assign(&commit_append_rev_hash_key)?;
	countersignatory_contrib.add_assign(&broadcaster_contrib[..])?;
	Ok(countersignatory_contrib)
}

/// Derives a per-commitment-transaction revocation public key from its constituent parts. This is
/// the public equivalend of derive_private_revocation_key - using only public keys to derive a
/// public key instead of private keys.
///
/// Only the cheating participant owns a valid witness to propagate a revoked 
/// commitment transaction, thus per_commitment_point always come from cheater
/// and revocation_base_point always come from punisher, which is the broadcaster
/// of the transaction spending with this key knowledge.
///
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
/// generated (ie our own).
pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, countersignatory_revocation_base_point: &PublicKey) -> Result<PublicKey, SecpError> {
	let rev_append_commit_hash_key = {
		let mut sha = Sha256::engine();
		sha.input(&countersignatory_revocation_base_point.serialize());
		sha.input(&per_commitment_point.serialize());

		Sha256::from_engine(sha).into_inner()
	};
	let commit_append_rev_hash_key = {
		let mut sha = Sha256::engine();
		sha.input(&per_commitment_point.serialize());
		sha.input(&countersignatory_revocation_base_point.serialize());

		Sha256::from_engine(sha).into_inner()
	};

	let mut countersignatory_contrib = countersignatory_revocation_base_point.clone();
	countersignatory_contrib.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
	let mut broadcaster_contrib = per_commitment_point.clone();
	broadcaster_contrib.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
	countersignatory_contrib.combine(&broadcaster_contrib)
}

/// The set of public keys which are used in the creation of one commitment transaction.
/// These are derived from the channel base keys and per-commitment data.
///
/// A broadcaster key is provided from potential broadcaster of the computed transaction.
/// A countersignatory key is coming from a protocol participant unable to broadcast the
/// transaction.
///
/// These keys are assumed to be good, either because the code derived them from
/// channel basepoints via the new function, or they were obtained via
/// CommitmentTransaction.trust().keys() because we trusted the source of the
/// pre-calculated keys.
#[derive(PartialEq, Clone)]
pub struct TxCreationKeys {
	/// The broadcaster's per-commitment public key which was used to derive the other keys.
	pub per_commitment_point: PublicKey,
	/// The revocation key which is used to allow the broadcaster of the commitment
	/// transaction to provide their counterparty the ability to punish them if they broadcast
	/// an old state.
	pub revocation_key: PublicKey,
	/// Broadcaster's HTLC Key
	pub broadcaster_htlc_key: PublicKey,
	/// Countersignatory's HTLC Key
	pub countersignatory_htlc_key: PublicKey,
	/// Broadcaster's Payment Key (which isn't allowed to be spent from for some delay)
	pub broadcaster_delayed_payment_key: PublicKey,
}

impl_writeable_tlv_based!(TxCreationKeys, {
	(0, per_commitment_point, required),
	(2, revocation_key, required),
	(4, broadcaster_htlc_key, required),
	(6, countersignatory_htlc_key, required),
	(8, broadcaster_delayed_payment_key, required),
});

/// One counterparty's public keys which do not change over the life of a channel.
#[derive(Clone, PartialEq)]
pub struct ChannelPublicKeys {
	/// The public key which is used to sign all commitment transactions, as it appears in the
	/// on-chain channel lock-in 2-of-2 multisig output.
	pub funding_pubkey: PublicKey,
	/// The base point which is used (with derive_public_revocation_key) to derive per-commitment
	/// revocation keys. This is combined with the per-commitment-secret generated by the
	/// counterparty to create a secret which the counterparty can reveal to revoke previous
	/// states.
	pub revocation_basepoint: PublicKey,
	/// The public key on which the non-broadcaster (ie the countersignatory) receives an immediately
	/// spendable primary channel balance on the broadcaster's commitment transaction. This key is
	/// static across every commitment transaction.
	pub payment_point: PublicKey,
	/// The base point which is used (with derive_public_key) to derive a per-commitment payment
	/// public key which receives non-HTLC-encumbered funds which are only available for spending
	/// after some delay (or can be claimed via the revocation path).
	pub delayed_payment_basepoint: PublicKey,
	/// The base point which is used (with derive_public_key) to derive a per-commitment public key
	/// which is used to encumber HTLC-in-flight outputs.
	pub htlc_basepoint: PublicKey,
}

impl_writeable_tlv_based!(ChannelPublicKeys, {
	(0, funding_pubkey, required),
	(2, revocation_basepoint, required),
	(4, payment_point, required),
	(6, delayed_payment_basepoint, required),
	(8, htlc_basepoint, required),
});

impl TxCreationKeys {
	/// Create per-state keys from channel base points and the per-commitment point.
	/// Key set is asymmetric and can't be used as part of counter-signatory set of transactions.
	pub fn derive_new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, broadcaster_delayed_payment_base: &PublicKey, broadcaster_htlc_base: &PublicKey, countersignatory_revocation_base: &PublicKey, countersignatory_htlc_base: &PublicKey) -> Result<TxCreationKeys, SecpError> {
		Ok(TxCreationKeys {
			per_commitment_point: per_commitment_point.clone(),
			revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &countersignatory_revocation_base)?,
			broadcaster_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_htlc_base)?,
			countersignatory_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &countersignatory_htlc_base)?,
			broadcaster_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_delayed_payment_base)?,
		})
	}

	/// Generate per-state keys from channel static keys.
	/// Key set is asymmetric and can't be used as part of counter-signatory set of transactions.
	pub fn from_channel_static_keys<T: secp256k1::Signing + secp256k1::Verification>(per_commitment_point: &PublicKey, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1<T>) -> Result<TxCreationKeys, SecpError> {
		TxCreationKeys::derive_new(
			&secp_ctx,
			&per_commitment_point,
			&broadcaster_keys.delayed_payment_basepoint,
			&broadcaster_keys.htlc_basepoint,
			&countersignatory_keys.revocation_basepoint,
			&countersignatory_keys.htlc_basepoint,
		)
	}
}

/// The maximum length of a script returned by get_revokeable_redeemscript.
// Calculated as 6 bytes of opcodes, 1 byte push plus 2 bytes for contest_delay, and two public
// keys of 33 bytes (+ 1 push).
pub const REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH: usize = 6 + 3 + 34*2;

/// A script either spendable by the revocation
/// key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain.
/// Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions.
pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, contest_delay: u16, broadcaster_delayed_payment_key: &PublicKey) -> Script {
	let res = Builder::new().push_opcode(opcodes::all::OP_IF)
	              .push_slice(&revocation_key.serialize())
	              .push_opcode(opcodes::all::OP_ELSE)
	              .push_int(contest_delay as i64)
	              .push_opcode(opcodes::all::OP_CSV)
	              .push_opcode(opcodes::all::OP_DROP)
	              .push_slice(&broadcaster_delayed_payment_key.serialize())
	              .push_opcode(opcodes::all::OP_ENDIF)
	              .push_opcode(opcodes::all::OP_CHECKSIG)
	              .into_script();
	debug_assert!(res.len() <= REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH);
	res
}

#[derive(Clone, PartialEq)]
/// Information about an HTLC as it appears in a commitment transaction
pub struct HTLCOutputInCommitment {
	/// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
	/// Note that this is not the same as whether it is ountbound *from us*. To determine that you
	/// need to compare this value to whether the commitment transaction in question is that of
	/// the counterparty or our own.
	pub offered: bool,
	/// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
	/// this divided by 1000.
	pub amount_msat: u64,
	/// The CLTV lock-time at which this HTLC expires.
	pub cltv_expiry: u32,
	/// The hash of the preimage which unlocks this HTLC.
	pub payment_hash: PaymentHash,
	/// The position within the commitment transactions' outputs. This may be None if the value is
	/// below the dust limit (in which case no output appears in the commitment transaction and the
	/// value is spent to additional transaction fees).
	pub transaction_output_index: Option<u32>,
}

impl_writeable_tlv_based!(HTLCOutputInCommitment, {
	(0, offered, required),
	(2, amount_msat, required),
	(4, cltv_expiry, required),
	(6, payment_hash, required),
	(8, transaction_output_index, option),
});

#[inline]
pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, opt_anchors: bool, broadcaster_htlc_key: &PublicKey, countersignatory_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
	let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
	if htlc.offered {
		let mut bldr = Builder::new().push_opcode(opcodes::all::OP_DUP)
		              .push_opcode(opcodes::all::OP_HASH160)
		              .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..])
		              .push_opcode(opcodes::all::OP_EQUAL)
		              .push_opcode(opcodes::all::OP_IF)
		              .push_opcode(opcodes::all::OP_CHECKSIG)
		              .push_opcode(opcodes::all::OP_ELSE)
		              .push_slice(&countersignatory_htlc_key.serialize()[..])
		              .push_opcode(opcodes::all::OP_SWAP)
		              .push_opcode(opcodes::all::OP_SIZE)
		              .push_int(32)
		              .push_opcode(opcodes::all::OP_EQUAL)
		              .push_opcode(opcodes::all::OP_NOTIF)
		              .push_opcode(opcodes::all::OP_DROP)
		              .push_int(2)
		              .push_opcode(opcodes::all::OP_SWAP)
		              .push_slice(&broadcaster_htlc_key.serialize()[..])
		              .push_int(2)
		              .push_opcode(opcodes::all::OP_CHECKMULTISIG)
		              .push_opcode(opcodes::all::OP_ELSE)
		              .push_opcode(opcodes::all::OP_HASH160)
		              .push_slice(&payment_hash160)
		              .push_opcode(opcodes::all::OP_EQUALVERIFY)
		              .push_opcode(opcodes::all::OP_CHECKSIG)
		              .push_opcode(opcodes::all::OP_ENDIF);
		if opt_anchors {
			bldr = bldr.push_opcode(opcodes::all::OP_PUSHNUM_1)
				.push_opcode(opcodes::all::OP_CSV)
				.push_opcode(opcodes::all::OP_DROP);
		}
		bldr.push_opcode(opcodes::all::OP_ENDIF)
			.into_script()
	} else {
			let mut bldr = Builder::new().push_opcode(opcodes::all::OP_DUP)
		              .push_opcode(opcodes::all::OP_HASH160)
		              .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..])
		              .push_opcode(opcodes::all::OP_EQUAL)
		              .push_opcode(opcodes::all::OP_IF)
		              .push_opcode(opcodes::all::OP_CHECKSIG)
		              .push_opcode(opcodes::all::OP_ELSE)
		              .push_slice(&countersignatory_htlc_key.serialize()[..])
		              .push_opcode(opcodes::all::OP_SWAP)
		              .push_opcode(opcodes::all::OP_SIZE)
		              .push_int(32)
		              .push_opcode(opcodes::all::OP_EQUAL)
		              .push_opcode(opcodes::all::OP_IF)
		              .push_opcode(opcodes::all::OP_HASH160)
		              .push_slice(&payment_hash160)
		              .push_opcode(opcodes::all::OP_EQUALVERIFY)
		              .push_int(2)
		              .push_opcode(opcodes::all::OP_SWAP)
		              .push_slice(&broadcaster_htlc_key.serialize()[..])
		              .push_int(2)
		              .push_opcode(opcodes::all::OP_CHECKMULTISIG)
		              .push_opcode(opcodes::all::OP_ELSE)
		              .push_opcode(opcodes::all::OP_DROP)
		              .push_int(htlc.cltv_expiry as i64)
		              .push_opcode(opcodes::all::OP_CLTV)
		              .push_opcode(opcodes::all::OP_DROP)
		              .push_opcode(opcodes::all::OP_CHECKSIG)
		              .push_opcode(opcodes::all::OP_ENDIF);
		if opt_anchors {
			bldr = bldr.push_opcode(opcodes::all::OP_PUSHNUM_1)
				.push_opcode(opcodes::all::OP_CSV)
				.push_opcode(opcodes::all::OP_DROP);
		}
		bldr.push_opcode(opcodes::all::OP_ENDIF)
			.into_script()
	}
}

/// Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc
/// does not need to have its previous_output_index filled.
#[inline]
pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, opt_anchors: bool, keys: &TxCreationKeys) -> Script {
	get_htlc_redeemscript_with_explicit_keys(htlc, opt_anchors, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key)
}

/// Gets the redeemscript for a funding output from the two funding public keys.
/// Note that the order of funding public keys does not matter.
pub fn make_funding_redeemscript(broadcaster: &PublicKey, countersignatory: &PublicKey) -> Script {
	let broadcaster_funding_key = broadcaster.serialize();
	let countersignatory_funding_key = countersignatory.serialize();

	let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
	if broadcaster_funding_key[..] < countersignatory_funding_key[..] {
		builder.push_slice(&broadcaster_funding_key)
			.push_slice(&countersignatory_funding_key)
	} else {
		builder.push_slice(&countersignatory_funding_key)
			.push_slice(&broadcaster_funding_key)
	}.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
}

/// Builds an unsigned HTLC-Success or HTLC-Timeout transaction from the given channel and HTLC
/// parameters. This is used by [`TrustedCommitmentTransaction::get_htlc_sigs`] to fetch the
/// transaction which needs signing, and can be used to construct an HTLC transaction which is
/// broadcastable given a counterparty HTLC signature.
///
/// Panics if htlc.transaction_output_index.is_none() (as such HTLCs do not appear in the
/// commitment transaction).
pub fn build_htlc_transaction(commitment_txid: &Txid, feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, opt_anchors: bool, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
	let mut txins: Vec<TxIn> = Vec::new();
	txins.push(TxIn {
		previous_output: OutPoint {
			txid: commitment_txid.clone(),
			vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"),
		},
		script_sig: Script::new(),
		sequence: if opt_anchors { 1 } else { 0 },
		witness: Witness::new(),
	});

	let weight = if htlc.offered {
		htlc_timeout_tx_weight(opt_anchors)
	} else {
		htlc_success_tx_weight(opt_anchors)
	};
	let total_fee = feerate_per_kw as u64 * weight / 1000;

	let mut txouts: Vec<TxOut> = Vec::new();
	txouts.push(TxOut {
		script_pubkey: get_revokeable_redeemscript(revocation_key, contest_delay, broadcaster_delayed_payment_key).to_v0_p2wsh(),
		value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here)
	});

	Transaction {
		version: 2,
		lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 },
		input: txins,
		output: txouts,
	}
}

/// Gets the witnessScript for the to_remote output when anchors are enabled.
#[inline]
pub(crate) fn get_to_countersignatory_with_anchors_redeemscript(payment_point: &PublicKey) -> Script {
	Builder::new()
		.push_slice(&payment_point.serialize()[..])
		.push_opcode(opcodes::all::OP_CHECKSIGVERIFY)
		.push_int(1)
		.push_opcode(opcodes::all::OP_CSV)
		.into_script()
}

/// Gets the witnessScript for an anchor output from the funding public key.
/// The witness in the spending input must be:
/// <BIP 143 funding_signature>
/// After 16 blocks of confirmation, an alternative satisfying witness could be:
/// <>
/// (empty vector required to satisfy compliance with MINIMALIF-standard rule)
#[inline]
pub fn get_anchor_redeemscript(funding_pubkey: &PublicKey) -> Script {
	Builder::new().push_slice(&funding_pubkey.serialize()[..])
		.push_opcode(opcodes::all::OP_CHECKSIG)
		.push_opcode(opcodes::all::OP_IFDUP)
		.push_opcode(opcodes::all::OP_NOTIF)
		.push_int(16)
		.push_opcode(opcodes::all::OP_CSV)
		.push_opcode(opcodes::all::OP_ENDIF)
		.into_script()
}

/// Per-channel data used to build transactions in conjunction with the per-commitment data (CommitmentTransaction).
/// The fields are organized by holder/counterparty.
///
/// Normally, this is converted to the broadcaster/countersignatory-organized DirectedChannelTransactionParameters
/// before use, via the as_holder_broadcastable and as_counterparty_broadcastable functions.
#[derive(Clone)]
pub struct ChannelTransactionParameters {
	/// Holder public keys
	pub holder_pubkeys: ChannelPublicKeys,
	/// The contest delay selected by the holder, which applies to counterparty-broadcast transactions
	pub holder_selected_contest_delay: u16,
	/// Whether the holder is the initiator of this channel.
	/// This is an input to the commitment number obscure factor computation.
	pub is_outbound_from_holder: bool,
	/// The late-bound counterparty channel transaction parameters.
	/// These parameters are populated at the point in the protocol where the counterparty provides them.
	pub counterparty_parameters: Option<CounterpartyChannelTransactionParameters>,
	/// The late-bound funding outpoint
	pub funding_outpoint: Option<chain::transaction::OutPoint>,
	/// Are anchors used for this channel.  Boolean is serialization backwards-compatible
	pub opt_anchors: Option<()>
}

/// Late-bound per-channel counterparty data used to build transactions.
#[derive(Clone)]
pub struct CounterpartyChannelTransactionParameters {
	/// Counter-party public keys
	pub pubkeys: ChannelPublicKeys,
	/// The contest delay selected by the counterparty, which applies to holder-broadcast transactions
	pub selected_contest_delay: u16,
}

impl ChannelTransactionParameters {
	/// Whether the late bound parameters are populated.
	pub fn is_populated(&self) -> bool {
		self.counterparty_parameters.is_some() && self.funding_outpoint.is_some()
	}

	/// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters,
	/// given that the holder is the broadcaster.
	///
	/// self.is_populated() must be true before calling this function.
	pub fn as_holder_broadcastable(&self) -> DirectedChannelTransactionParameters {
		assert!(self.is_populated(), "self.late_parameters must be set before using as_holder_broadcastable");
		DirectedChannelTransactionParameters {
			inner: self,
			holder_is_broadcaster: true
		}
	}

	/// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters,
	/// given that the counterparty is the broadcaster.
	///
	/// self.is_populated() must be true before calling this function.
	pub fn as_counterparty_broadcastable(&self) -> DirectedChannelTransactionParameters {
		assert!(self.is_populated(), "self.late_parameters must be set before using as_counterparty_broadcastable");
		DirectedChannelTransactionParameters {
			inner: self,
			holder_is_broadcaster: false
		}
	}
}

impl_writeable_tlv_based!(CounterpartyChannelTransactionParameters, {
	(0, pubkeys, required),
	(2, selected_contest_delay, required),
});

impl_writeable_tlv_based!(ChannelTransactionParameters, {
	(0, holder_pubkeys, required),
	(2, holder_selected_contest_delay, required),
	(4, is_outbound_from_holder, required),
	(6, counterparty_parameters, option),
	(8, funding_outpoint, option),
	(10, opt_anchors, option),
});

/// Static channel fields used to build transactions given per-commitment fields, organized by
/// broadcaster/countersignatory.
///
/// This is derived from the holder/counterparty-organized ChannelTransactionParameters via the
/// as_holder_broadcastable and as_counterparty_broadcastable functions.
pub struct DirectedChannelTransactionParameters<'a> {
	/// The holder's channel static parameters
	inner: &'a ChannelTransactionParameters,
	/// Whether the holder is the broadcaster
	holder_is_broadcaster: bool,
}

impl<'a> DirectedChannelTransactionParameters<'a> {
	/// Get the channel pubkeys for the broadcaster
	pub fn broadcaster_pubkeys(&self) -> &ChannelPublicKeys {
		if self.holder_is_broadcaster {
			&self.inner.holder_pubkeys
		} else {
			&self.inner.counterparty_parameters.as_ref().unwrap().pubkeys
		}
	}

	/// Get the channel pubkeys for the countersignatory
	pub fn countersignatory_pubkeys(&self) -> &ChannelPublicKeys {
		if self.holder_is_broadcaster {
			&self.inner.counterparty_parameters.as_ref().unwrap().pubkeys
		} else {
			&self.inner.holder_pubkeys
		}
	}

	/// Get the contest delay applicable to the transactions.
	/// Note that the contest delay was selected by the countersignatory.
	pub fn contest_delay(&self) -> u16 {
		let counterparty_parameters = self.inner.counterparty_parameters.as_ref().unwrap();
		if self.holder_is_broadcaster { counterparty_parameters.selected_contest_delay } else { self.inner.holder_selected_contest_delay }
	}

	/// Whether the channel is outbound from the broadcaster.
	///
	/// The boolean representing the side that initiated the channel is
	/// an input to the commitment number obscure factor computation.
	pub fn is_outbound(&self) -> bool {
		if self.holder_is_broadcaster { self.inner.is_outbound_from_holder } else { !self.inner.is_outbound_from_holder }
	}

	/// The funding outpoint
	pub fn funding_outpoint(&self) -> OutPoint {
		self.inner.funding_outpoint.unwrap().into_bitcoin_outpoint()
	}

	/// Whether to use anchors for this channel
	pub fn opt_anchors(&self) -> bool {
		self.inner.opt_anchors.is_some()
	}
}

/// Information needed to build and sign a holder's commitment transaction.
///
/// The transaction is only signed once we are ready to broadcast.
#[derive(Clone)]
pub struct HolderCommitmentTransaction {
	inner: CommitmentTransaction,
	/// Our counterparty's signature for the transaction
	pub counterparty_sig: Signature,
	/// All non-dust counterparty HTLC signatures, in the order they appear in the transaction
	pub counterparty_htlc_sigs: Vec<Signature>,
	// Which order the signatures should go in when constructing the final commitment tx witness.
	// The user should be able to reconstruct this themselves, so we don't bother to expose it.
	holder_sig_first: bool,
}

impl Deref for HolderCommitmentTransaction {
	type Target = CommitmentTransaction;

	fn deref(&self) -> &Self::Target { &self.inner }
}

impl PartialEq for HolderCommitmentTransaction {
	// We dont care whether we are signed in equality comparison
	fn eq(&self, o: &Self) -> bool {
		self.inner == o.inner
	}
}

impl_writeable_tlv_based!(HolderCommitmentTransaction, {
	(0, inner, required),
	(2, counterparty_sig, required),
	(4, holder_sig_first, required),
	(6, counterparty_htlc_sigs, vec_type),
});

impl HolderCommitmentTransaction {
	#[cfg(test)]
	pub fn dummy() -> Self {
		let secp_ctx = Secp256k1::new();
		let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
		let dummy_sig = sign(&secp_ctx, &secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap());

		let keys = TxCreationKeys {
			per_commitment_point: dummy_key.clone(),
			revocation_key: dummy_key.clone(),
			broadcaster_htlc_key: dummy_key.clone(),
			countersignatory_htlc_key: dummy_key.clone(),
			broadcaster_delayed_payment_key: dummy_key.clone(),
		};
		let channel_pubkeys = ChannelPublicKeys {
			funding_pubkey: dummy_key.clone(),
			revocation_basepoint: dummy_key.clone(),
			payment_point: dummy_key.clone(),
			delayed_payment_basepoint: dummy_key.clone(),
			htlc_basepoint: dummy_key.clone()
		};
		let channel_parameters = ChannelTransactionParameters {
			holder_pubkeys: channel_pubkeys.clone(),
			holder_selected_contest_delay: 0,
			is_outbound_from_holder: false,
			counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: channel_pubkeys.clone(), selected_contest_delay: 0 }),
			funding_outpoint: Some(chain::transaction::OutPoint { txid: Default::default(), index: 0 }),
			opt_anchors: None
		};
		let mut htlcs_with_aux: Vec<(_, ())> = Vec::new();
		let inner = CommitmentTransaction::new_with_auxiliary_htlc_data(0, 0, 0, false, dummy_key.clone(), dummy_key.clone(), keys, 0, &mut htlcs_with_aux, &channel_parameters.as_counterparty_broadcastable());
		HolderCommitmentTransaction {
			inner,
			counterparty_sig: dummy_sig,
			counterparty_htlc_sigs: Vec::new(),
			holder_sig_first: false
		}
	}

	/// Create a new holder transaction with the given counterparty signatures.
	/// The funding keys are used to figure out which signature should go first when building the transaction for broadcast.
	pub fn new(commitment_tx: CommitmentTransaction, counterparty_sig: Signature, counterparty_htlc_sigs: Vec<Signature>, holder_funding_key: &PublicKey, counterparty_funding_key: &PublicKey) -> Self {
		Self {
			inner: commitment_tx,
			counterparty_sig,
			counterparty_htlc_sigs,
			holder_sig_first: holder_funding_key.serialize()[..] < counterparty_funding_key.serialize()[..],
		}
	}

	pub(crate) fn add_holder_sig(&self, funding_redeemscript: &Script, holder_sig: Signature) -> Transaction {
		// First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
		let mut tx = self.inner.built.transaction.clone();
		tx.input[0].witness.push(Vec::new());
		let mut ser_holder_sig = holder_sig.serialize_der().to_vec();
		ser_holder_sig.push(EcdsaSighashType::All as u8);
		let mut ser_cp_sig = self.counterparty_sig.serialize_der().to_vec();
		ser_cp_sig.push(EcdsaSighashType::All as u8);

		if self.holder_sig_first {
			tx.input[0].witness.push(ser_holder_sig);
			tx.input[0].witness.push(ser_cp_sig);
		} else {
			tx.input[0].witness.push(ser_cp_sig);
			tx.input[0].witness.push(ser_holder_sig);
		}

		tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
		tx
	}
}

/// A pre-built Bitcoin commitment transaction and its txid.
#[derive(Clone)]
pub struct BuiltCommitmentTransaction {
	/// The commitment transaction
	pub transaction: Transaction,
	/// The txid for the commitment transaction.
	///
	/// This is provided as a performance optimization, instead of calling transaction.txid()
	/// multiple times.
	pub txid: Txid,
}

impl_writeable_tlv_based!(BuiltCommitmentTransaction, {
	(0, transaction, required),
	(2, txid, required),
});

impl BuiltCommitmentTransaction {
	/// Get the SIGHASH_ALL sighash value of the transaction.
	///
	/// This can be used to verify a signature.
	pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message {
		let sighash = &sighash::SighashCache::new(&self.transaction).segwit_signature_hash(0, funding_redeemscript, channel_value_satoshis, EcdsaSighashType::All).unwrap()[..];
		hash_to_message!(sighash)
	}

	/// Sign a transaction, either because we are counter-signing the counterparty's transaction or
	/// because we are about to broadcast a holder transaction.
	pub fn sign<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
		let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis);
		sign(secp_ctx, &sighash, funding_key)
	}
}

/// This class tracks the per-transaction information needed to build a closing transaction and will
/// actually build it and sign.
///
/// This class can be used inside a signer implementation to generate a signature given the relevant
/// secret key.
#[derive(Clone, Hash, PartialEq)]
pub struct ClosingTransaction {
	to_holder_value_sat: u64,
	to_counterparty_value_sat: u64,
	to_holder_script: Script,
	to_counterparty_script: Script,
	built: Transaction,
}

impl ClosingTransaction {
	/// Construct an object of the class
	pub fn new(
		to_holder_value_sat: u64,
		to_counterparty_value_sat: u64,
		to_holder_script: Script,
		to_counterparty_script: Script,
		funding_outpoint: OutPoint,
	) -> Self {
		let built = build_closing_transaction(
			to_holder_value_sat, to_counterparty_value_sat,
			to_holder_script.clone(), to_counterparty_script.clone(),
			funding_outpoint
		);
		ClosingTransaction {
			to_holder_value_sat,
			to_counterparty_value_sat,
			to_holder_script,
			to_counterparty_script,
			built
		}
	}

	/// Trust our pre-built transaction.
	///
	/// Applies a wrapper which allows access to the transaction.
	///
	/// This should only be used if you fully trust the builder of this object. It should not
	/// be used by an external signer - instead use the verify function.
	pub fn trust(&self) -> TrustedClosingTransaction {
		TrustedClosingTransaction { inner: self }
	}

	/// Verify our pre-built transaction.
	///
	/// Applies a wrapper which allows access to the transaction.
	///
	/// An external validating signer must call this method before signing
	/// or using the built transaction.
	pub fn verify(&self, funding_outpoint: OutPoint) -> Result<TrustedClosingTransaction, ()> {
		let built = build_closing_transaction(
			self.to_holder_value_sat, self.to_counterparty_value_sat,
			self.to_holder_script.clone(), self.to_counterparty_script.clone(),
			funding_outpoint
		);
		if self.built != built {
			return Err(())
		}
		Ok(TrustedClosingTransaction { inner: self })
	}

	/// The value to be sent to the holder, or zero if the output will be omitted
	pub fn to_holder_value_sat(&self) -> u64 {
		self.to_holder_value_sat
	}

	/// The value to be sent to the counterparty, or zero if the output will be omitted
	pub fn to_counterparty_value_sat(&self) -> u64 {
		self.to_counterparty_value_sat
	}

	/// The destination of the holder's output
	pub fn to_holder_script(&self) -> &Script {
		&self.to_holder_script
	}

	/// The destination of the counterparty's output
	pub fn to_counterparty_script(&self) -> &Script {
		&self.to_counterparty_script
	}
}

/// A wrapper on ClosingTransaction indicating that the built bitcoin
/// transaction is trusted.
///
/// See trust() and verify() functions on CommitmentTransaction.
///
/// This structure implements Deref.
pub struct TrustedClosingTransaction<'a> {
	inner: &'a ClosingTransaction,
}

impl<'a> Deref for TrustedClosingTransaction<'a> {
	type Target = ClosingTransaction;

	fn deref(&self) -> &Self::Target { self.inner }
}

impl<'a> TrustedClosingTransaction<'a> {
	/// The pre-built Bitcoin commitment transaction
	pub fn built_transaction(&self) -> &Transaction {
		&self.inner.built
	}

	/// Get the SIGHASH_ALL sighash value of the transaction.
	///
	/// This can be used to verify a signature.
	pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message {
		let sighash = &sighash::SighashCache::new(&self.inner.built).segwit_signature_hash(0, funding_redeemscript, channel_value_satoshis, EcdsaSighashType::All).unwrap()[..];
		hash_to_message!(sighash)
	}

	/// Sign a transaction, either because we are counter-signing the counterparty's transaction or
	/// because we are about to broadcast a holder transaction.
	pub fn sign<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
		let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis);
		sign(secp_ctx, &sighash, funding_key)
	}
}

/// This class tracks the per-transaction information needed to build a commitment transaction and will
/// actually build it and sign.  It is used for holder transactions that we sign only when needed
/// and for transactions we sign for the counterparty.
///
/// This class can be used inside a signer implementation to generate a signature given the relevant
/// secret key.
#[derive(Clone)]
pub struct CommitmentTransaction {
	commitment_number: u64,
	to_broadcaster_value_sat: u64,
	to_countersignatory_value_sat: u64,
	feerate_per_kw: u32,
	htlcs: Vec<HTLCOutputInCommitment>,
	// A boolean that is serialization backwards-compatible
	opt_anchors: Option<()>,
	// A cache of the parties' pubkeys required to construct the transaction, see doc for trust()
	keys: TxCreationKeys,
	// For access to the pre-built transaction, see doc for trust()
	built: BuiltCommitmentTransaction,
}

impl PartialEq for CommitmentTransaction {
	fn eq(&self, o: &Self) -> bool {
		let eq = self.commitment_number == o.commitment_number &&
			self.to_broadcaster_value_sat == o.to_broadcaster_value_sat &&
			self.to_countersignatory_value_sat == o.to_countersignatory_value_sat &&
			self.feerate_per_kw == o.feerate_per_kw &&
			self.htlcs == o.htlcs &&
			self.opt_anchors == o.opt_anchors &&
			self.keys == o.keys;
		if eq {
			debug_assert_eq!(self.built.transaction, o.built.transaction);
			debug_assert_eq!(self.built.txid, o.built.txid);
		}
		eq
	}
}

impl_writeable_tlv_based!(CommitmentTransaction, {
	(0, commitment_number, required),
	(2, to_broadcaster_value_sat, required),
	(4, to_countersignatory_value_sat, required),
	(6, feerate_per_kw, required),
	(8, keys, required),
	(10, built, required),
	(12, htlcs, vec_type),
	(14, opt_anchors, option),
});

impl CommitmentTransaction {
	/// Construct an object of the class while assigning transaction output indices to HTLCs.
	///
	/// Populates HTLCOutputInCommitment.transaction_output_index in htlcs_with_aux.
	///
	/// The generic T allows the caller to match the HTLC output index with auxiliary data.
	/// This auxiliary data is not stored in this object.
	///
	/// Only include HTLCs that are above the dust limit for the channel.
	///
	/// (C-not exported) due to the generic though we likely should expose a version without
	pub fn new_with_auxiliary_htlc_data<T>(commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, opt_anchors: bool, broadcaster_funding_key: PublicKey, countersignatory_funding_key: PublicKey, keys: TxCreationKeys, feerate_per_kw: u32, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> CommitmentTransaction {
		// Sort outputs and populate output indices while keeping track of the auxiliary data
		let (outputs, htlcs) = Self::internal_build_outputs(&keys, to_broadcaster_value_sat, to_countersignatory_value_sat, htlcs_with_aux, channel_parameters, opt_anchors, &broadcaster_funding_key, &countersignatory_funding_key).unwrap();

		let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(commitment_number, channel_parameters);
		let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs);
		let txid = transaction.txid();
		CommitmentTransaction {
			commitment_number,
			to_broadcaster_value_sat,
			to_countersignatory_value_sat,
			feerate_per_kw,
			htlcs,
			opt_anchors: if opt_anchors { Some(()) } else { None },
			keys,
			built: BuiltCommitmentTransaction {
				transaction,
				txid
			},
		}
	}

	fn internal_rebuild_transaction(&self, keys: &TxCreationKeys, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_funding_key: &PublicKey, countersignatory_funding_key: &PublicKey) -> Result<BuiltCommitmentTransaction, ()> {
		let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(self.commitment_number, channel_parameters);

		let mut htlcs_with_aux = self.htlcs.iter().map(|h| (h.clone(), ())).collect();
		let (outputs, _) = Self::internal_build_outputs(keys, self.to_broadcaster_value_sat, self.to_countersignatory_value_sat, &mut htlcs_with_aux, channel_parameters, self.opt_anchors.is_some(), broadcaster_funding_key, countersignatory_funding_key)?;

		let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs);
		let txid = transaction.txid();
		let built_transaction = BuiltCommitmentTransaction {
			transaction,
			txid
		};
		Ok(built_transaction)
	}

	fn make_transaction(obscured_commitment_transaction_number: u64, txins: Vec<TxIn>, outputs: Vec<TxOut>) -> Transaction {
		Transaction {
			version: 2,
			lock_time: ((0x20 as u32) << 8 * 3) | ((obscured_commitment_transaction_number & 0xffffffu64) as u32),
			input: txins,
			output: outputs,
		}
	}

	// This is used in two cases:
	// - initial sorting of outputs / HTLCs in the constructor, in which case T is auxiliary data the
	//   caller needs to have sorted together with the HTLCs so it can keep track of the output index
	// - building of a bitcoin transaction during a verify() call, in which case T is just ()
	fn internal_build_outputs<T>(keys: &TxCreationKeys, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters, opt_anchors: bool, broadcaster_funding_key: &PublicKey, countersignatory_funding_key: &PublicKey) -> Result<(Vec<TxOut>, Vec<HTLCOutputInCommitment>), ()> {
		let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys();
		let contest_delay = channel_parameters.contest_delay();

		let mut txouts: Vec<(TxOut, Option<&mut HTLCOutputInCommitment>)> = Vec::new();

		if to_countersignatory_value_sat > 0 {
			let script = if opt_anchors {
			    get_to_countersignatory_with_anchors_redeemscript(&countersignatory_pubkeys.payment_point).to_v0_p2wsh()
			} else {
			    get_p2wpkh_redeemscript(&countersignatory_pubkeys.payment_point)
			};
			txouts.push((
				TxOut {
					script_pubkey: script.clone(),
					value: to_countersignatory_value_sat,
				},
				None,
			))
		}

		if to_broadcaster_value_sat > 0 {
			let redeem_script = get_revokeable_redeemscript(
				&keys.revocation_key,
				contest_delay,
				&keys.broadcaster_delayed_payment_key,
			);
			txouts.push((
				TxOut {
					script_pubkey: redeem_script.to_v0_p2wsh(),
					value: to_broadcaster_value_sat,
				},
				None,
			));
		}

		if opt_anchors {
			if to_broadcaster_value_sat > 0 || !htlcs_with_aux.is_empty() {
				let anchor_script = get_anchor_redeemscript(broadcaster_funding_key);
				txouts.push((
					TxOut {
						script_pubkey: anchor_script.to_v0_p2wsh(),
						value: ANCHOR_OUTPUT_VALUE_SATOSHI,
					},
					None,
				));
			}

			if to_countersignatory_value_sat > 0 || !htlcs_with_aux.is_empty() {
				let anchor_script = get_anchor_redeemscript(countersignatory_funding_key);
				txouts.push((
					TxOut {
						script_pubkey: anchor_script.to_v0_p2wsh(),
						value: ANCHOR_OUTPUT_VALUE_SATOSHI,
					},
					None,
				));
			}
		}

		let mut htlcs = Vec::with_capacity(htlcs_with_aux.len());
		for (htlc, _) in htlcs_with_aux {
			let script = chan_utils::get_htlc_redeemscript(&htlc, opt_anchors, &keys);
			let txout = TxOut {
				script_pubkey: script.to_v0_p2wsh(),
				value: htlc.amount_msat / 1000,
			};
			txouts.push((txout, Some(htlc)));
		}

		// Sort output in BIP-69 order (amount, scriptPubkey).  Tie-breaks based on HTLC
		// CLTV expiration height.
		sort_outputs(&mut txouts, |a, b| {
			if let &Some(ref a_htlcout) = a {
				if let &Some(ref b_htlcout) = b {
					a_htlcout.cltv_expiry.cmp(&b_htlcout.cltv_expiry)
						// Note that due to hash collisions, we have to have a fallback comparison
						// here for fuzzing mode (otherwise at least chanmon_fail_consistency
						// may fail)!
						.then(a_htlcout.payment_hash.0.cmp(&b_htlcout.payment_hash.0))
				// For non-HTLC outputs, if they're copying our SPK we don't really care if we
				// close the channel due to mismatches - they're doing something dumb:
				} else { cmp::Ordering::Equal }
			} else { cmp::Ordering::Equal }
		});

		let mut outputs = Vec::with_capacity(txouts.len());
		for (idx, out) in txouts.drain(..).enumerate() {
			if let Some(htlc) = out.1 {
				htlc.transaction_output_index = Some(idx as u32);
				htlcs.push(htlc.clone());
			}
			outputs.push(out.0);
		}
		Ok((outputs, htlcs))
	}

	fn internal_build_inputs(commitment_number: u64, channel_parameters: &DirectedChannelTransactionParameters) -> (u64, Vec<TxIn>) {
		let broadcaster_pubkeys = channel_parameters.broadcaster_pubkeys();
		let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys();
		let commitment_transaction_number_obscure_factor = get_commitment_transaction_number_obscure_factor(
			&broadcaster_pubkeys.payment_point,
			&countersignatory_pubkeys.payment_point,
			channel_parameters.is_outbound(),
		);

		let obscured_commitment_transaction_number =
			commitment_transaction_number_obscure_factor ^ (INITIAL_COMMITMENT_NUMBER - commitment_number);

		let txins = {
			let mut ins: Vec<TxIn> = Vec::new();
			ins.push(TxIn {
				previous_output: channel_parameters.funding_outpoint(),
				script_sig: Script::new(),
				sequence: ((0x80 as u32) << 8 * 3)
					| ((obscured_commitment_transaction_number >> 3 * 8) as u32),
				witness: Witness::new(),
			});
			ins
		};
		(obscured_commitment_transaction_number, txins)
	}

	/// The backwards-counting commitment number
	pub fn commitment_number(&self) -> u64 {
		self.commitment_number
	}

	/// The value to be sent to the broadcaster
	pub fn to_broadcaster_value_sat(&self) -> u64 {
		self.to_broadcaster_value_sat
	}

	/// The value to be sent to the counterparty
	pub fn to_countersignatory_value_sat(&self) -> u64 {
		self.to_countersignatory_value_sat
	}

	/// The feerate paid per 1000-weight-unit in this commitment transaction.
	pub fn feerate_per_kw(&self) -> u32 {
		self.feerate_per_kw
	}

	/// The non-dust HTLCs (direction, amt, height expiration, hash, transaction output index)
	/// which were included in this commitment transaction in output order.
	/// The transaction index is always populated.
	///
	/// (C-not exported) as we cannot currently convert Vec references to/from C, though we should
	/// expose a less effecient version which creates a Vec of references in the future.
	pub fn htlcs(&self) -> &Vec<HTLCOutputInCommitment> {
		&self.htlcs
	}

	/// Trust our pre-built transaction and derived transaction creation public keys.
	///
	/// Applies a wrapper which allows access to these fields.
	///
	/// This should only be used if you fully trust the builder of this object.  It should not
	/// be used by an external signer - instead use the verify function.
	pub fn trust(&self) -> TrustedCommitmentTransaction {
		TrustedCommitmentTransaction { inner: self }
	}

	/// Verify our pre-built transaction and derived transaction creation public keys.
	///
	/// Applies a wrapper which allows access to these fields.
	///
	/// An external validating signer must call this method before signing
	/// or using the built transaction.
	pub fn verify<T: secp256k1::Signing + secp256k1::Verification>(&self, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1<T>) -> Result<TrustedCommitmentTransaction, ()> {
		// This is the only field of the key cache that we trust
		let per_commitment_point = self.keys.per_commitment_point;
		let keys = TxCreationKeys::from_channel_static_keys(&per_commitment_point, broadcaster_keys, countersignatory_keys, secp_ctx).unwrap();
		if keys != self.keys {
			return Err(());
		}
		let tx = self.internal_rebuild_transaction(&keys, channel_parameters, &broadcaster_keys.funding_pubkey, &countersignatory_keys.funding_pubkey)?;
		if self.built.transaction != tx.transaction || self.built.txid != tx.txid {
			return Err(());
		}
		Ok(TrustedCommitmentTransaction { inner: self })
	}
}

/// A wrapper on CommitmentTransaction indicating that the derived fields (the built bitcoin
/// transaction and the transaction creation keys) are trusted.
///
/// See trust() and verify() functions on CommitmentTransaction.
///
/// This structure implements Deref.
pub struct TrustedCommitmentTransaction<'a> {
	inner: &'a CommitmentTransaction,
}

impl<'a> Deref for TrustedCommitmentTransaction<'a> {
	type Target = CommitmentTransaction;

	fn deref(&self) -> &Self::Target { self.inner }
}

impl<'a> TrustedCommitmentTransaction<'a> {
	/// The transaction ID of the built Bitcoin transaction
	pub fn txid(&self) -> Txid {
		self.inner.built.txid
	}

	/// The pre-built Bitcoin commitment transaction
	pub fn built_transaction(&self) -> &BuiltCommitmentTransaction {
		&self.inner.built
	}

	/// The pre-calculated transaction creation public keys.
	pub fn keys(&self) -> &TxCreationKeys {
		&self.inner.keys
	}

	/// Should anchors be used.
	pub fn opt_anchors(&self) -> bool {
		self.opt_anchors.is_some()
	}

	/// Get a signature for each HTLC which was included in the commitment transaction (ie for
	/// which HTLCOutputInCommitment::transaction_output_index.is_some()).
	///
	/// The returned Vec has one entry for each HTLC, and in the same order.
	///
	/// This function is only valid in the holder commitment context, it always uses EcdsaSighashType::All.
	pub fn get_htlc_sigs<T: secp256k1::Signing>(&self, htlc_base_key: &SecretKey, channel_parameters: &DirectedChannelTransactionParameters, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()> {
		let inner = self.inner;
		let keys = &inner.keys;
		let txid = inner.built.txid;
		let mut ret = Vec::with_capacity(inner.htlcs.len());
		let holder_htlc_key = derive_private_key(secp_ctx, &inner.keys.per_commitment_point, htlc_base_key).map_err(|_| ())?;

		for this_htlc in inner.htlcs.iter() {
			assert!(this_htlc.transaction_output_index.is_some());
			let htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);

			let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, self.opt_anchors(), &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key);

			let sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, this_htlc.amount_msat / 1000, EcdsaSighashType::All).unwrap()[..]);
			ret.push(sign(secp_ctx, &sighash, &holder_htlc_key));
		}
		Ok(ret)
	}

	/// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the holder HTLC transaction signature.
	pub(crate) fn get_signed_htlc_tx(&self, channel_parameters: &DirectedChannelTransactionParameters, htlc_index: usize, counterparty_signature: &Signature, signature: &Signature, preimage: &Option<PaymentPreimage>) -> Transaction {
		let inner = self.inner;
		let keys = &inner.keys;
		let txid = inner.built.txid;
		let this_htlc = &inner.htlcs[htlc_index];
		assert!(this_htlc.transaction_output_index.is_some());
		// if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction.
		if !this_htlc.offered && preimage.is_none() { unreachable!(); }
		// Further, we should never be provided the preimage for an HTLC-Timeout transaction.
		if  this_htlc.offered && preimage.is_some() { unreachable!(); }

		let mut htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);

		let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, self.opt_anchors(), &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key);

		let sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };

		// First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
		htlc_tx.input[0].witness.push(Vec::new());

		let mut cp_sig_ser = counterparty_signature.serialize_der().to_vec();
		cp_sig_ser.push(sighashtype as u8);
		htlc_tx.input[0].witness.push(cp_sig_ser);
		let mut holder_sig_ser = signature.serialize_der().to_vec();
		holder_sig_ser.push(EcdsaSighashType::All as u8);
		htlc_tx.input[0].witness.push(holder_sig_ser);

		if this_htlc.offered {
			// Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
			htlc_tx.input[0].witness.push(Vec::new());
		} else {
			htlc_tx.input[0].witness.push(preimage.unwrap().0.to_vec());
		}

		htlc_tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
		htlc_tx
	}
}

/// Commitment transaction numbers which appear in the transactions themselves are XOR'd with a
/// shared secret first. This prevents on-chain observers from discovering how many commitment
/// transactions occurred in a channel before it was closed.
///
/// This function gets the shared secret from relevant channel public keys and can be used to
/// "decrypt" the commitment transaction number given a commitment transaction on-chain.
pub fn get_commitment_transaction_number_obscure_factor(
	broadcaster_payment_basepoint: &PublicKey,
	countersignatory_payment_basepoint: &PublicKey,
	outbound_from_broadcaster: bool,
) -> u64 {
	let mut sha = Sha256::engine();

	if outbound_from_broadcaster {
		sha.input(&broadcaster_payment_basepoint.serialize());
		sha.input(&countersignatory_payment_basepoint.serialize());
	} else {
		sha.input(&countersignatory_payment_basepoint.serialize());
		sha.input(&broadcaster_payment_basepoint.serialize());
	}
	let res = Sha256::from_engine(sha).into_inner();

	((res[26] as u64) << 5 * 8)
		| ((res[27] as u64) << 4 * 8)
		| ((res[28] as u64) << 3 * 8)
		| ((res[29] as u64) << 2 * 8)
		| ((res[30] as u64) << 1 * 8)
		| ((res[31] as u64) << 0 * 8)
}

fn get_p2wpkh_redeemscript(key: &PublicKey) -> Script {
	Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
		.push_slice(&WPubkeyHash::hash(&key.serialize())[..])
		.into_script()
}

#[cfg(test)]
mod tests {
	use super::CounterpartyCommitmentSecrets;
	use ::{hex, chain};
	use prelude::*;
	use ln::chan_utils::{get_htlc_redeemscript, get_to_countersignatory_with_anchors_redeemscript, get_p2wpkh_redeemscript, CommitmentTransaction, TxCreationKeys, ChannelTransactionParameters, CounterpartyChannelTransactionParameters, HTLCOutputInCommitment};
	use bitcoin::secp256k1::{PublicKey, SecretKey, Secp256k1};
	use util::test_utils;
	use chain::keysinterface::{KeysInterface, BaseSign};
	use bitcoin::Network;
	use ln::PaymentHash;
	use bitcoin::hashes::hex::ToHex;

	#[test]
	fn test_anchors() {
		let secp_ctx = Secp256k1::new();

		let seed = [42; 32];
		let network = Network::Testnet;
		let keys_provider = test_utils::TestKeysInterface::new(&seed, network);
		let signer = keys_provider.get_channel_signer(false, 3000);
		let counterparty_signer = keys_provider.get_channel_signer(false, 3000);
		let delayed_payment_base = &signer.pubkeys().delayed_payment_basepoint;
		let per_commitment_secret = SecretKey::from_slice(&hex::decode("1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100").unwrap()[..]).unwrap();
		let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
		let htlc_basepoint = &signer.pubkeys().htlc_basepoint;
		let holder_pubkeys = signer.pubkeys();
		let counterparty_pubkeys = counterparty_signer.pubkeys();
		let keys = TxCreationKeys::derive_new(&secp_ctx, &per_commitment_point, delayed_payment_base, htlc_basepoint, &counterparty_pubkeys.revocation_basepoint, &counterparty_pubkeys.htlc_basepoint).unwrap();
		let mut channel_parameters = ChannelTransactionParameters {
			holder_pubkeys: holder_pubkeys.clone(),
			holder_selected_contest_delay: 0,
			is_outbound_from_holder: false,
			counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: counterparty_pubkeys.clone(), selected_contest_delay: 0 }),
			funding_outpoint: Some(chain::transaction::OutPoint { txid: Default::default(), index: 0 }),
			opt_anchors: None
		};

		let mut htlcs_with_aux: Vec<(_, ())> = Vec::new();

		// Generate broadcaster and counterparty outputs
		let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
			0, 1000, 2000,
			false,
			holder_pubkeys.funding_pubkey,
			counterparty_pubkeys.funding_pubkey,
			keys.clone(), 1,
			&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
		);
		assert_eq!(tx.built.transaction.output.len(), 2);
		assert_eq!(tx.built.transaction.output[1].script_pubkey, get_p2wpkh_redeemscript(&counterparty_pubkeys.payment_point));

		// Generate broadcaster and counterparty outputs as well as two anchors
		let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
			0, 1000, 2000,
			true,
			holder_pubkeys.funding_pubkey,
			counterparty_pubkeys.funding_pubkey,
			keys.clone(), 1,
			&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
		);
		assert_eq!(tx.built.transaction.output.len(), 4);
		assert_eq!(tx.built.transaction.output[3].script_pubkey, get_to_countersignatory_with_anchors_redeemscript(&counterparty_pubkeys.payment_point).to_v0_p2wsh());

		// Generate broadcaster output and anchor
		let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
			0, 3000, 0,
			true,
			holder_pubkeys.funding_pubkey,
			counterparty_pubkeys.funding_pubkey,
			keys.clone(), 1,
			&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
		);
		assert_eq!(tx.built.transaction.output.len(), 2);

		// Generate counterparty output and anchor
		let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
			0, 0, 3000,
			true,
			holder_pubkeys.funding_pubkey,
			counterparty_pubkeys.funding_pubkey,
			keys.clone(), 1,
			&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
		);
		assert_eq!(tx.built.transaction.output.len(), 2);

		let received_htlc = HTLCOutputInCommitment {
			offered: false,
			amount_msat: 400000,
			cltv_expiry: 100,
			payment_hash: PaymentHash([42; 32]),
			transaction_output_index: None,
		};

		let offered_htlc = HTLCOutputInCommitment {
			offered: true,
			amount_msat: 600000,
			cltv_expiry: 100,
			payment_hash: PaymentHash([43; 32]),
			transaction_output_index: None,
		};

		// Generate broadcaster output and received and offered HTLC outputs,  w/o anchors
		let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
			0, 3000, 0,
			false,
			holder_pubkeys.funding_pubkey,
			counterparty_pubkeys.funding_pubkey,
			keys.clone(), 1,
			&mut vec![(received_htlc.clone(), ()), (offered_htlc.clone(), ())],
			&channel_parameters.as_holder_broadcastable()
		);
		assert_eq!(tx.built.transaction.output.len(), 3);
		assert_eq!(tx.built.transaction.output[0].script_pubkey, get_htlc_redeemscript(&received_htlc, false, &keys).to_v0_p2wsh());
		assert_eq!(tx.built.transaction.output[1].script_pubkey, get_htlc_redeemscript(&offered_htlc, false, &keys).to_v0_p2wsh());
		assert_eq!(get_htlc_redeemscript(&received_htlc, false, &keys).to_v0_p2wsh().to_hex(),
				   "002085cf52e41ba7c099a39df504e7b61f6de122971ceb53b06731876eaeb85e8dc5");
		assert_eq!(get_htlc_redeemscript(&offered_htlc, false, &keys).to_v0_p2wsh().to_hex(),
				   "002049f0736bb335c61a04d2623a24df878a7592a3c51fa7258d41b2c85318265e73");

		// Generate broadcaster output and received and offered HTLC outputs,  with anchors
		channel_parameters.opt_anchors = Some(());
		let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
			0, 3000, 0,
			true,
			holder_pubkeys.funding_pubkey,
			counterparty_pubkeys.funding_pubkey,
			keys.clone(), 1,
			&mut vec![(received_htlc.clone(), ()), (offered_htlc.clone(), ())],
			&channel_parameters.as_holder_broadcastable()
		);
		assert_eq!(tx.built.transaction.output.len(), 5);
		assert_eq!(tx.built.transaction.output[2].script_pubkey, get_htlc_redeemscript(&received_htlc, true, &keys).to_v0_p2wsh());
		assert_eq!(tx.built.transaction.output[3].script_pubkey, get_htlc_redeemscript(&offered_htlc, true, &keys).to_v0_p2wsh());
		assert_eq!(get_htlc_redeemscript(&received_htlc, true, &keys).to_v0_p2wsh().to_hex(),
				   "002067114123af3f95405bae4fd930fc95de03e3c86baaee8b2dd29b43dd26cf613c");
		assert_eq!(get_htlc_redeemscript(&offered_htlc, true, &keys).to_v0_p2wsh().to_hex(),
				   "0020a06e3b0d4fcf704f2b9c41e16a70099e39989466c3142b8573a1154542f28f57");
	}

	#[test]
	fn test_per_commitment_storage() {
		// Test vectors from BOLT 3:
		let mut secrets: Vec<[u8; 32]> = Vec::new();
		let mut monitor;

		macro_rules! test_secrets {
			() => {
				let mut idx = 281474976710655;
				for secret in secrets.iter() {
					assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
					idx -= 1;
				}
				assert_eq!(monitor.get_min_seen_secret(), idx + 1);
				assert!(monitor.get_secret(idx).is_none());
			};
		}

		{
			// insert_secret correct sequence
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
			monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
			monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
			monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
			monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();
		}

		{
			// insert_secret #1 incorrect
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			assert!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #2 incorrect (#1 derived from incorrect)
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #3 incorrect
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #4 incorrect (1,2,3 derived from incorrect)
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
			monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
			monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
			monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
			monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
			assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #5 incorrect
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
			monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
			assert!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #6 incorrect (5 derived from incorrect)
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
			monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
			monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
			monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
			assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #7 incorrect
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
			monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
			monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
			monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
			assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
		}

		{
			// insert_secret #8 incorrect
			monitor = CounterpartyCommitmentSecrets::new();
			secrets.clear();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
			monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
			monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
			monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
			monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
			monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
			monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
			monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
			test_secrets!();

			secrets.push([0; 32]);
			secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
			assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
		}
	}
}