1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
/// name = "light_phylogeny"
/// version = "1.4.1"
/// authors = ["Simon Penel <simon.penel@univ-lyon1.fr>"]
/// license = "CECILL-2.1"
use std::process;
use log::{info};
pub const BLOCK: f32 = 60.0;
pub const PIPEBLOCK: f32 = BLOCK / 4.0;

// Convention: "pipe" trees are equivalent to "upper" trees, "path" trees are equivalenet to "lower" trees

// Structures
// ==========

/// Noeud Structure. It describes a node of a tree stored in a Arena structure.
/// Concerning recPhyloXML file, we assume in the documentation that it describes a gene/species reconciliation.
#[derive(Debug)]
pub struct Noeud<T>
where
    T: PartialEq
{
    /// Index in the Arena structure.
    pub idx: usize,             // index dans la structure
    val: T,                     // valeur unique dans la structure
    /// Name of the node.
    pub name: String,           // nom du noeud ou de la feuille
    /// Support of the node.
    pub support: String,           // support du noeud
    /// Parent of the node.
    pub parent: Option<usize>,  // index du parent
    /// Children of the node.
    pub children: Vec<usize>,   // indexes des enfants
    /// x coordinate.
    pub x: f32,                 // coordonnee x (avant rotation 90 svg)
    /// x shift.
    pub xmod: f32,              // decalage x a ajouter a x
    /// y coordinate.
    pub y: f32,                 // coordonnee y (avant rotation 90 svg)
    /// y shift.
    pub ymod: f32,              // decalage y a ajouter a y (pour les arbres reconcilies)
    /// Real branch length.
    pub l: f32,                 // longueur de branche lue dans le fichier
    /// Event (duplication, speciation, loss, transfer ...)
    pub e: Event,               // evenement (dans le cas d'arbre de gene) Duplication, Loss, etc.
    /// Location of the gene tree node in the species tree (recPhyloXML)
    pub location: String,       // SpeciesLocaton associe evenement (dans le cas d'arbre de gene)
    /// Pipe width (recPhyloXML)
    pub width: f32,             // largeur du tuyeau (dans le cas d'arbre d'espece)
    /// Pipe height (recPhyloXML)
    pub height: f32,            // hauteur du tuyeau (dans le cas d'arbre d'espece)
    /// Number of gene nodes associated to the species node (recPhyloXML)
    pub nbg: usize,             // nombre de noeud  d'arbre de genes associcés à ce noeud
                                // (dans le cas d'arbre d'espece)
    /// Number of gene nodes associated to the species node (recPhyloXML)
    pub nodes: Vec<(usize,usize)>,      // gene nodes associes (dans le cas d'arbre d'espece)
    /// The node come from a transfer (it is a transferBack and its parent is a BranchingOut).
    pub is_a_transfert: bool,   // the node come from a tarnsfert, i.e. he is a transferBack and
                                // his parent is a BranchingOut . Since more than 1 event is
                                // associated to the node in xml (as transferBack+leaf)
                                // and only one is  associated to the node in the structure
                                // (here leaf).
    /// Optimisation: number of left-side orientation minimising transfer crossings (recPhyloXML).
    pub go_left: usize,                            // this is useful for drawing the transfer.
    /// Optimisation: number of right-side orientation minimising transfer crossings (recPhyloXML).
    pub go_right: usize,
    /// Optimisation: node is fixed, left/side orientation of children can not be modified (recPhyloXML).
    pub fixed: bool,
    /// Optimisation: indexes of transfers associated to the node (recPhyloXML).
    pub transfers: Vec<usize>,      // transfer associes (dans le cas d'arbre d'espece)
    /// Node will be displayed.
    pub visible: bool,
    /// Node is a virtual node created for the svg only.
    pub virtualsvg: bool,
}
impl<T> Noeud<T>
where
    T: PartialEq
{
    pub fn new(idx: usize, val: T) -> Self {
        Self {
            idx,
            val,
            name: String::from("Undefined"),
            support: String::from("Undefined"),
            parent: None,
            children: vec![],
            x: 0.0,
            xmod: 0.0,
            y: 0.0,
            ymod: 0.0,
            l: 0.0,
            e: Event::Undef,
            location: String::from("Undefined"),
            width: PIPEBLOCK ,
            height: PIPEBLOCK ,
            nbg: 0,
            nodes: vec![],
            is_a_transfert: false,
            go_left: 0,
            go_right: 0,
            fixed: false,
            transfers: vec![],
            visible: true,
            virtualsvg: false,
        }
    }
    /// Set node event.
    pub fn set_event(&mut self, e: Event)
    {
        self.e = e;
    }
    /// Set node x.
    pub fn set_x_noref(&mut self, x: f32)
    {
        self.x = x;
    }
    /// Set node xmod.
    pub fn set_xmod_noref(&mut self, xmod: f32)
    {
        self.xmod = xmod;
    }
    /// Set node ymod.
    pub fn set_ymod_noref(&mut self, ymod: f32)
    {
        self.ymod = ymod;
    }
    /// Set node y.
    pub fn set_y_noref(&mut self, y: f32)
    {
        self.y = y;
    }
}
/// ArenaTree Structure. It describes a binary phylogenetic tree.
///
/// Inspirated from
/// <https://dev.to/deciduously/no-more-tears-no-more-knots-arena-allocated-trees-in-rust-44k6>
///
/// Ben Lovy <https://deciduously.com/>
#[derive(Debug, Default)]
pub struct ArenaTree<T>
where
    T: PartialEq
{
    pub arena: Vec<Noeud<T>>,
}
impl<T> ArenaTree<T>
where
    T: PartialEq + std::default::Default + std::fmt::Debug
{
    #[allow(dead_code)]
    /// Add a node with a given val and send its new index. If the
    /// node already exists, send its index.
    pub fn node(&mut self, val: T) -> usize {
        // first see if it exists
        for node in &self.arena {
            if node.val == val {
                return node.idx;
            }
        }
        // Otherwise, add new node
        let idx = self.arena.len();
        self.arena.push(Noeud::new(idx, val));
        idx
    }
    /// Add a node with a given val and send its new index. If the
    /// node already exists, send a panic alert.
    pub fn new_node(&mut self, val: T) -> usize {
        //first see if it exists
        for node in &self.arena {
            if node.val == val {
                    panic!("Node already exists.{:?}",node);
            }
        }
        // Otherwise, add new node
        let idx = self.arena.len();
        self.arena.push(Noeud::new(idx, val));
        // Ok(idx)
        idx
    }
	/// Get the index of a node from its val. If the
    /// node does not exists, send a panic alert.
    pub fn get_node(&mut self, val: T) -> usize {
        // first see if it exists
        for node in &self.arena {
            if node.val == val {
                return node.idx;
            }
        }
        panic!("Node does not  exist.");
    }
    /// Get the index of a node from its name. Send a Result(index, error)
    pub fn get_index(&mut self, name: String) -> Result <usize, usize> {
        for node in &self.arena {
            if node.name == name {
                return Ok(node.idx)
             }
            }
        info!("Note: Unable to find {} in the tree.",name);
        Err(0)
    }
    /// Get the index of the root.
    pub fn get_root(&mut self) -> usize {
        for node in &self.arena {
            if node.parent == None {
                return node.idx
             }
        }
    	panic!("Unable to get root of the tree.");
    }
    /// Check if the node is a leaf.
    pub fn is_leaf(&self, idx: usize) -> bool {
        match self.arena[idx].children.len() {
        0 => true,
        _ => false,
        }
    }
    /// Check if the node is a left node.
    pub fn is_left(&self, idx: usize) -> bool {
        match self.arena[idx].parent {
        Some(p) => {
            let children = &self.arena[p].children;
            idx == children[0]
        },
        None => false,
        }
    }
    /// Check if the node is the root.
    #[allow(dead_code)]
    pub fn is_root(&self, idx: usize) -> bool {
        match self.arena[idx].parent {
        Some(_p) => false,
        None => true,
        }
    }
    /// Get the depth of the node in the tree.
    pub fn depth(&self, idx: usize) -> usize {
        match self.arena[idx].parent {
            Some(id) => 1 + self.depth(id),
            None => 0,
        }
    }
    /// Get the largest x value of a tree.
    pub fn get_largest_x(&mut self) -> f32 {
        let mut max = 0.0;
        for node in &self.arena {
            if node.x + node.width / 2.0 > max {
                max = node.x + node.width / 2.0 ;
                }
            }
        max
    }
    /// Get the largest y value of a tree.
    pub fn get_largest_y(&mut self) -> f32 {
        let mut max = 0.0;
        for node in &self.arena {
            if node.y  + node.height / 2.0 > max {
                max = node.y + node.height / 2.0  ;
             }
            }
        max
    }
    /// Get the largest y value of a tree execpt the free living part.
    pub fn get_largest_y_nofl(&mut self) -> f32 {
        let mut max = 0.0;
        for node in &self.arena {
            if node.y  + node.height / 2.0 > max && node.location != "FREE_LIVING".to_string()
            && node.name != "FREE_LIVING".to_string() {
                max = node.y + node.height / 2.0  ;
            }
        }
        max
    }
    /// Get the smallest x value of a tree.
    pub fn get_smallest_x(&mut self) -> f32 {
        let mut min = 1000000.0;
        for node in &self.arena {
            if node.x - node.width / 2.0 < min {
                min = node.x  - node.width / 2.0 ;
            }
        }
        min
    }
    /// Get the smallest y value of a tree.
    pub fn get_smallest_y(&mut self) -> f32 {
        let mut min = 1000000.0;
        for node in &self.arena {
            if node.y - node.height / 2.0 < min {
                min = node.y - node.height / 2.0;
            }
        }
        min
    }
    /// Get the smallest l value of a tree.
    pub fn get_smallest_l(&mut self) -> f32 {
        let mut min = 1000000.0;
        for node in &self.arena {
            if node.l < min {
                min = node.l;
            }
        }
        min
    }
    /// Get the largest height .
    pub fn get_largest_height(&mut self) -> f32 {
        let mut max = 0.0;
        for node in &self.arena {
            if node.height > max {
                max = node.height;
            }
        }
        max
    }
    /// Shift subtree on x .
    pub fn shift_x_subtree(&mut self, idx: usize, shift: f32) {
        let mut x = self.arena[idx].x;
        x = x + shift;
        info!("[shift_x_subtree] shifting node {} ({}) of {}",&self.arena[idx].name,&self.arena[idx].x,shift);
        let _ = &self.arena[idx].set_x_noref(x);
        info!("[shift_x_subtree] new value     {} ({})",&self.arena[idx].name,&self.arena[idx].x);
        let children = &self.arena[idx].children;
        if children.len() > 0 {
            let left = children[0];
            let right = children[1];
            let _ = &self.shift_x_subtree(left, shift);
            let _ = &self.shift_x_subtree(right, shift);
        }
    }
    /// Copy a whole ArenaTree structure.
    pub fn copie(&mut self) -> ArenaTree<String> {
        let  mut new: ArenaTree<String> = ArenaTree::default();
        let mut i = 0;
        for node in &self.arena {
            let  idx = new.new_node(i.to_string());
            new.arena[idx].name = node.name.clone();
            new.arena[idx].support = node.support.clone();
            new.arena[idx].parent = node.parent;
            new.arena[idx].children = node.children.clone();
            new.arena[idx].x = node.x;
            new.arena[idx].y = node.y;
            new.arena[idx].xmod = node.xmod;
            new.arena[idx].ymod = node.ymod;
            new.arena[idx].l = node.l;
            new.arena[idx].e = match node.e {
                Event::Speciation => Event::Speciation,
                Event::Duplication => Event::Duplication,
                Event::Loss => Event::Loss,
                Event::BranchingOut => Event::BranchingOut,
                Event::TransferBack => Event::TransferBack,
                Event::BifurcationOut => Event::BifurcationOut,
                Event::Leaf => Event::Leaf,
                Event::ObsoleteSpeciationLoss => Event::ObsoleteSpeciationLoss,
                Event::Undef => Event::Undef,
            };
            new.arena[idx].location = node.location.clone();
            new.arena[idx].width = node.width;
            new.arena[idx].height = node.height;
            new.arena[idx].nbg = node.nbg;
            new.arena[idx].nodes = node.nodes.clone();
            new.arena[idx].is_a_transfert = node.is_a_transfert;
            new.arena[idx].go_left = node.go_left;
            new.arena[idx].go_right = node.go_right;
            new.arena[idx].fixed = node.fixed;
            new.arena[idx].transfers = node.transfers.clone();
            new.arena[idx].visible = node.visible;
            new.arena[idx].virtualsvg = node.virtualsvg;
            i = i + 1 ;
        }
        new
    }
}
///  Structure Options: these are the drawing options for the svg. Concerning recPhyloXML file, we assume in the documentation that it describes a gene/species reconciliation.
#[derive(Debug)]
pub struct Options{
    ///Display branch length
    pub branch: bool,
    /// Display internal gene nodes.
    pub gene_internal: bool,
    /// Display internal species nodes (recPhyloXML).
    pub species_internal: bool,
    /// Display a cladogramme.
    pub clado_flag: bool,
    /// Only draw the species tree (recPhyloXML).
    pub species_only_flag: bool,
    /// Use the real branch length.
    pub real_length_flag: bool,
    /// Open the svg in the browser.
    pub open_browser: bool,
    /// Verbose mode.
    pub verbose: bool,
    /// Only draw gene tree number # (recPhyloXML).
    pub disp_gene: usize,
    /// Scale to be applied to real branch length.
    pub scale: f32,
    /// Ratio between  species pipe tree width and cumulated gene trees width (recPhyloXML).
    pub ratio: f32,
    /// Rotate the svg 90 counter clockwise.
    pub rotate: bool,
    /// Not yet implemented.
    pub remove: bool,
    /// Draw only one transfer to represent redundant transfers (recPhyloXML).
    pub thickness_flag: bool,
    /// Abundance threshold for displaying redundant transfers (recPhyloXML).
    pub thickness_thresh: usize,
    /// Number of the gene tree to display when displaying redundant transfers as one (recPhyloXML).
    pub thickness_gene: usize,
    /// Display the abundance of the redundant transfers (recPhyloXML).
    pub thickness_disp_score:bool,
    /// Tidy option
    pub tidy: bool,
    /// Tidy option
    pub tidy_leaves_check: bool,
    /// Optimise species branches left/right orientation in order to minimise transfer crossings (recPhyloXML, under development).
    pub optimisation: bool,
    /// Scale to be applied to the heigth of the tree.
    pub height: f32,
    /// Width to be applied to the heigth of the tree.
    pub width: f32,
    /// Display support.
    pub support: bool,
    /// Support "free living" species (i.e. not associated to a species of the species tree) in the gene tree(s).
    pub free_living: bool,
    /// With free_living option : in case of multriple gene trees, shifting  free living trees instead superposing.
    pub free_living_shift: bool,
    /// Uniformise the species tree nodes size.
    pub uniform: bool,
    /// thickness of the stroke for gene trees
    pub gthickness: usize,
    /// thickness of the stroke for species trees
    pub sthickness: usize,
    /// used for the size of square, circle, etc.
    pub squaresize: f32,
    /// start transfert
    pub trans_start: Option<String>,
    /// end transfert
    pub trans_end: Option<String>,
    /// place les duplication et les branchingout
    /// a mi distance de leur parent
    pub mid_dist: bool,
}
impl Options {
    pub fn new() -> Self {
        Self {
            branch: false,
            gene_internal: false,
            species_internal: false,
            clado_flag: true,
            species_only_flag: false,
            real_length_flag: false,
            open_browser: false,
            verbose: false,
            disp_gene: 0,
            scale: 1.0,
            ratio: 1.0,
            rotate: true,
            remove: false,
            thickness_flag: false,
            thickness_thresh: 0,
            thickness_gene: 0,
            thickness_disp_score: false,
            tidy: false,
            tidy_leaves_check: false,
            optimisation: false,
            height: 1.0,
            width: 1.0,
            support: false,
            free_living: false,
            free_living_shift: false,
            uniform: false,
            gthickness: 3,
            sthickness: 6,
            squaresize: 6.0,
            trans_start:None,
            trans_end:None,
            mid_dist:false,
        }
    }
}
/// Structure Config: drawing config.
#[derive(Debug)]
pub struct Config{
    pub species_color: String,
    pub species_opacity: String,
    pub single_gene_color: String,
    pub gene_opacity: String,
    pub species_police_color: String,
    pub species_police_size: String,
    pub gene_police_size: String,
    pub bezier: String,
}
impl Config {
    pub fn new() -> Self {
        Self {
            species_color: "pink".to_string(),
            species_opacity: "0.9".to_string(),
            single_gene_color: "blue".to_string(),
            gene_opacity: "0.9".to_string(),
            species_police_color: "orange".to_string(),
            species_police_size: "12".to_string(),
            gene_police_size: "10".to_string(),
            bezier: "1".to_string(),
        }
    }
}

// Enums
// =====

/// Enum of the possible events in a gene tree.
#[allow(dead_code)]
#[derive(Debug, PartialEq)]
pub enum Event {
    Speciation,
    Duplication,
    Loss,
    BranchingOut,
    TransferBack,
    BifurcationOut,
    Leaf,
    ObsoleteSpeciationLoss,
    Undef,
}
/// There  is no Default pour enum, we define one.
impl Default for Event {
    fn default() -> Self { Event::Undef }
}

// Functions
// =========

///  Fill an ArenaTree structure with the contents of a parentheses  tree.
pub fn newick2tree(
    arbre: String,
    tree: &mut ArenaTree<String>,
    index: usize,
    num: &mut usize
    ) {
    info!("[newick2tree] Tree = {}",arbre);
    let arbre = arbre;
    check_is_rooted(&arbre);
    let (left, right, trail) = find_left_right(arbre);
    info!("[newick2tree] Left = {} Right = {} Trail = {}",left, right, trail);
    match trail.find(':') {
        Some(j) => {
            tree.arena[index].l = trail[j+1..].to_string().parse::<f32>().unwrap();
            tree.arena[index].name = trail[0..j].to_string();
        },
        None => {
            tree.arena[index].name = trail[..].to_string();
        },
    };
    match left.find(',') {
        Some(_i)=> {
            *num = *num + 1;
            //  Nouveau noeud
            let name = "NODE_".to_string()+&num.to_string();
            let new_index = tree.new_node(name.to_string());
            tree.arena[index].children.push(new_index);
            tree.arena[new_index].parent = Some(index);
            newick2tree(left, tree,new_index,num);
        },
        None => {
            info!("[newick2tree] {} is a leaf",left);
            *num = *num + 1;
            let name = "NODE_".to_string() + &num.to_string();
            let left_index = tree.new_node(name);
            tree.arena[index].children.push(left_index);
            tree.arena[left_index].parent = Some(index);
            // Suppression des balise NHX (tres sale)
            // TODO a ameliorer
            let left =  match left.find("[&&"){
                Some(k) => left[..k].to_string(),
                None => left[..].to_string(),
            };
            match left.find(':') {
                Some(i)=> {
                    tree.arena[left_index].name = left[0..i].to_string();
                    tree.arena[left_index].l = left[i+1..].to_string().parse::<f32>().unwrap();
                },
                None => {
                    tree.arena[left_index].name = left;
                },
            }
        },
    };
    match right.find(',') {
        Some(_i)=> {
            *num = *num + 1;
            let name = "NODE_".to_string() + &num.to_string();
            let new_index = tree.new_node(name.to_string());
            tree.arena[index].children.push(new_index);
            tree.arena[new_index].parent = Some(index);
            newick2tree(right, tree, new_index, num);
        },
        None => {
            info!("[newick2tree] {} is a leaf",right);
            *num = *num + 1;
            let name = "NODE_".to_string() + &num.to_string();
            let right_index = tree.new_node(name);
            tree.arena[index].children.push(right_index);
            tree.arena[right_index].parent = Some(index);
            // Suppression des balise NHX (tres sale)
            // TODO a ameliorer
            let right = match right.find("[&&"){
                Some(k) => right[..k].to_string(),
                None => right[..].to_string(),
            };
            match  right.find(':') {
                Some(i) => {
                    tree.arena[right_index].name = right[0..i].to_string();
                    tree.arena[right_index].l = right[i+1..].to_string().parse::<f32>().unwrap();
                },
                None => {
                    tree.arena[right_index].name = right;
                },
            }
        },
    };
}
/// Check if tree in newick format is rooted.
pub fn check_is_rooted(arbre: &String) {
    let p = arbre.matches('(').count();
    let c = arbre.matches(',').count();
    if p == c {
        info!("Tree is rooted.");
    }
    else
    if p + 1 == c  {
        println!("Tree is unrooted.");
        println!("Please use a rooted tree.");
        process::exit(0);
    }
    else {
        eprintln!("\nERROR:");
        println!("Unable to determine if tree is rooted.");
        eprintln!("It seems the input file is not in a correct newick format.");
        eprintln!("You may use another format (phyloxml or recphyloxml) to read the file.");
        process::exit(1)
    }
}
/// Split a parenthesed tree into  left and right  parenthesed trees and trailing  string.
pub fn find_left_right(arbre: String) -> (String, String, String) {
    let mut len = arbre.len() - 1;
    if &arbre[len..] == "\n" {
        len -= 1;
    }
    if &arbre[..1] != "(" {
        eprintln!("\nERROR:");
        eprintln!("It seems the input file is not in a correct newick format.");
        eprintln!("You may use another format (phyloxml or recphyloxml) to read the file.");
        process::exit(1)
    }
    let mut num_par = 0;
    let mut i = 0;
    for char in arbre.chars() {
        i += 1;
        match char {
            '(' => num_par += 1,
            ')' => num_par -= 1,
            ',' => {
                if num_par == 1 {
                    break
                }
            },
            _ => {}
        };
    }
    let left = (&arbre[1..i-1]).to_string();
    let right = (&arbre[i..len+1]).to_string();
    let trail =  match right.rfind(')') {
        Some(k) =>  right[k+1..].to_string(),
        None => "".to_string(),
    };
    let trail =  match trail.find(';') {
        Some(k) =>  trail[0..k].to_string(),
        None => trail,
    };
    let right =  match right.rfind(')') {
        Some(k) =>  right[..k].to_string(),
        None => right[..].to_string(),
    };
    // Suppression des balise NHX (tres sale)
    // TODO a ameliorer
    let trail =  match trail.find("[&&") {
        Some(k) =>  trail[..k].to_string(),
        None => trail[..].to_string(),
    };
    (left, right, trail)
}
/// Fill an ArenaTree structure with the contents of a roxmltree::Node structure.
pub fn xml2tree (
    node: roxmltree::Node,
    parent: usize,
    mut numero : &mut usize,
    mut  tree: &mut ArenaTree<String>,
    ) {
    // Note : speciationLoss", "speciationOutLoss", "speciationOut" sont obsolètes
    // (vieux fomat recphyloxml)
    // On essaie de les traiter correctement
    // je cherche les fils
    let children = node.children();
    for child in children {
        if child.has_tag_name("clade"){
            // increment le numero
            *numero += 1;
            // Nouveau nom
            let name = "N".to_owned() + &numero.to_string();
            //  index de ce nouveau nom
            let name = tree.new_node(name.to_string());
            //Ajoute ce noeud au parent
            tree.arena[parent].children.push(name);
            // Attribue un parent a ce noeud
            tree.arena[name].parent = Some(parent);
            let nb_att = child.attributes().len();
            if nb_att >= 1 {
                let mut i = 0;
                while i < nb_att {
                    if child.attributes().nth(i).unwrap().name() == "branch_length" {
                        let dist = child.attributes().nth(i).unwrap().value().parse::<f32>();
                        match dist {
                            Ok(dist) => tree.arena[name].l = dist,
                            Err(_err) => panic!("[xml2tree] Unable to read branch length"),
                        };
                    }
                    i = i + 1 ;
                }
            }
            // Explore le reste de l'arbre a partir de ce noeud
            xml2tree(child, name, &mut numero, &mut tree);
        }
        // Attribue le nom defini dans le tag id
        if child.has_tag_name("id"){
            let nom = child.first_child().unwrap().text();
            match nom {
                Some(text) => tree.arena[parent].name = text.to_string(),
                None => tree.arena[parent].name = "Unkwnown".to_string(),
            };
        }
        // Attribue le nom defini dans le tag name
        if child.has_tag_name("name"){
            let nom = child.first_child().unwrap().text();
            match nom {
                Some(text) => tree.arena[parent].name = text.to_string(),
                None => tree.arena[parent].name = "Unkwnown".to_string(),
            };
        }
        // Attribue la distance definie dans le tag branch_length
        if child.has_tag_name("branch_length"){
            let dist = child.first_child().unwrap().text();
            match dist {
                Some(text) => tree.arena[parent].l = text.to_string().parse::<f32>().unwrap(),
                None => panic!("[xml2tree] Unable to read branch length"),
            };
        }
        // Attribue le support defini dans confidence
        if child.has_tag_name("confidence"){
            let support = child.first_child().unwrap().text();
            match support {
                Some(text) => tree.arena[parent].support = text.to_string(),
                None => panic!("[xml2tree] Unable to read branch support"),
            };
        }
        // traitement events (phyloXML)
        if child.has_tag_name("events"){
            info!("[xml2tree]  phyloXML event detected at {:?}",tree.arena[parent]);
            for evenement in child.children() {
                if evenement.has_tag_name("speciations"){
                    tree.arena[parent].set_event(Event::Speciation);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                };
                if evenement.has_tag_name("duplications"){
                    tree.arena[parent].set_event(Event::Duplication);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                };
                if evenement.has_tag_name("losses"){
                    tree.arena[parent].set_event(Event::Loss);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                };
            }
        }
        // traitement eventsRec (recPhyloXML)
        if child.has_tag_name("eventsRec"){
            info!("[xml2tree] recPhyloXML event detected at {:?}",tree.arena[parent]);
            let mut event_num = 0; // Le nb d'evenements dans balise eventsRec
            let mut sploss_num = 0; // pour le format obsolete
            let current_sploss_name = parent;
            for evenement in child.children() {
                if evenement.has_tag_name("speciationLoss"){
                    // speciationLoss is obsolete and need a special processing: adding 2 nodes,
                    // one of them  being a loss
                    info!("[xml2tree] Find obsolete tag speciationLoss (# {})", sploss_num);
                    info!("[xml2tree] Index of current father (current_sploss_name)  {}",
                        current_sploss_name);
                    info!("[xml2tree] Initial tree {:?}", tree);
                    sploss_num += 1;
                    // Incremente le numero
                    *numero += 1;
                    // Nouveau nom
                    let sploss_name = "ADDED_SPECLOSS".to_owned() + &numero.to_string();
                    info!("[xml2tree] Create new node sploss {}",sploss_name);
                    //  index de ce nouveau nom
                    let sploss_name = tree.new_node(sploss_name.to_string());
                    info!("[xml2tree] Modified tree 1  {:?}",tree);
                    info!("[xml2tree] Index of current node {}",parent);
                    // Je veux que le noeud courant soit le fils du ouveau noeud, et que celui ci
                    // prenne la place du noeud courant.
                    // parent du noeud courant:
                    let grandparent = match tree.arena[parent].parent {
                        Some(p) => p,
                        None => panic!("No parent! Unable to process obsolete format"),
                    };
                    // Attribution d'un nom et d'un event
                    tree.arena[sploss_name].set_event(Event::ObsoleteSpeciationLoss);
                    tree.arena[sploss_name].name = "SpecOutLoss".to_string();
                    // Attribution d'une location
                    assert!(evenement.has_attribute("speciesLocation"));
                    assert_eq!(evenement.attributes().nth(0).unwrap().name(),"speciesLocation");
                    let location = evenement.attributes().nth(0).unwrap().value();
                    info!("[xml2tree] Location is {}",location);
                    info!("[xml2tree] Set Location of sploss_name:");
                    tree.arena[sploss_name].location = location.to_string();
                    // Ajout du nouveau noeud comme frere du noeud courant
                    tree.arena[sploss_name].parent = Some(grandparent);
                    // Vire le noeud courant des fils de son pere
                    tree.arena[grandparent].children.retain(|&x| x !=  parent);
                    // Ajoute le nouveau noeud  au pere
                    tree.arena[grandparent].children.push(sploss_name);
                    // Ajoute le noeud  courant au nouveau noeud
                    tree.arena[sploss_name].children.push(parent);
                    //  Redfinit le parent du noeud courant
                    tree.arena[parent].parent = Some(sploss_name);
                    info!("[xml2tree] Modified tree 2  {:?}",tree);
                    // Nouveau nom Loss
                    let loss_name = "ADDED_LOSS".to_owned() + &numero.to_string();
                    info!("[xml2tree] Create new node loss {}",loss_name);
                    //  index de ce nouveau nom
                    let loss_name = tree.new_node(loss_name.to_string());
                    info!("[xml2tree] New node loss : {:?}",tree.arena[loss_name]);
                    //  Ajoute le Loss au nouveau noeud
                    tree.arena[sploss_name].children.push(loss_name);
                    tree.arena[loss_name].parent = Some(sploss_name);
                    // Attribution d'un nom et d'un event
                    tree.arena[loss_name].set_event(Event::Loss);
                    tree.arena[loss_name].name = "Added Loss".to_string();
                }
                if evenement.has_tag_name("speciationOutLoss"){
                    panic!("Warning: taxon 'speciationOutLoss' is obsolete");
                }
                if evenement.has_tag_name("speciationOut"){
                    panic!("Warning: taxon 'speciationOut' is obsolete");
                }
                if evenement.has_tag_name("loss"){
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}",event_num,evenement);
                    tree.arena[parent].set_event(Event::Loss);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                    assert!(evenement.has_attribute("speciesLocation"));
                    assert_eq!(evenement.attributes().nth(0).unwrap().name(), "speciesLocation");
                    let location = evenement.attributes().nth(0).unwrap().value();
                    tree.arena[parent].location = location.to_string();
                }
                if evenement.has_tag_name("leaf"){
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}",event_num,evenement);
                    // TODO
                    // C'est une feuille mais pas forcement  le premier evenement:
                    // <eventsRec>
                    //   <leaf speciesLocation="5"></leaf>
                    // </eventsRec>
                    //  mais dans les autres cas
                    // <eventsRec>
                    //   <transferBack destinationSpecies="4"></transferBack>
                    //   <leaf speciesLocation="4"></leaf>
                    // </eventsRec>
                    //  On va ecraser l'info  transferBack, mais celle-ci a ete stockée dans
                    //  le champs is_a_transfert
                    tree.arena[parent].set_event(Event::Leaf);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                    info!("[xml2tree] Attributes of {:?} are {:?}", evenement, evenement.attributes());
                    let nb_att = evenement.attributes().len();
                    info!("[xml2tree] Number of attributes  = {}",nb_att);
                    assert!(evenement.has_attribute("speciesLocation"));
                    if nb_att == 1 {
                        assert_eq!(evenement.attributes().nth(0).unwrap().name(), "speciesLocation");
                        let location = evenement.attributes().nth(0).unwrap().value();
                        tree.arena[parent].location = location.to_string();
                    }
                    else {
                        // TODO tres sale verifier : on a les deux possibilites:
                        // <leaf speciesLocation="Lentisphaerae" geneName="Lentisphaerae"></leaf>
                        // <leaf geneName="a2_a" speciesLocation="a"></leaf>
                        assert!(nb_att == 2);
                        assert!(evenement.has_attribute("geneName"));
                        assert!(evenement.has_attribute("speciesLocation"));
                        if evenement.attributes().nth(0).unwrap().name() == "geneName" {
                            assert_eq!(evenement.attributes().nth(1).unwrap().name(), "speciesLocation");
                            let name = evenement.attributes().nth(0).unwrap().value();
                            tree.arena[parent].name = name.to_string();
                            info!("[xml2tree] set name {:?}",tree.arena[parent]);
                            let location = evenement.attributes().nth(1).unwrap().value();
                            tree.arena[parent].location = location.to_string();
                        }
                        if evenement.attributes().nth(1).unwrap().name() == "geneName" {
                            assert_eq!(evenement.attributes().nth(0).unwrap().name(), "speciesLocation");
                            let name = evenement.attributes().nth(1).unwrap().value();
                            tree.arena[parent].name = name.to_string();
                            info!("[xml2tree] set name {:?}",tree.arena[parent]);
                            let location = evenement.attributes().nth(0).unwrap().value();
                            tree.arena[parent].location = location.to_string();
                        }
                    }
                }
                if evenement.has_tag_name("speciation"){
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}", event_num, evenement);
                    tree.arena[parent].set_event(Event::Speciation);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                    info!("[xml2tree] Attributes of {:?} are {:?}", evenement, evenement.attributes());
                    assert!(evenement.has_attribute("speciesLocation"));
                    assert_eq!(evenement.attributes().nth(0).unwrap().name(), "speciesLocation");
                    let location = evenement.attributes().nth(0).unwrap().value();
                    info!("[xml2tree] set location = {}",location);
                    tree.arena[parent].location = location.to_string();
                }
                if evenement.has_tag_name("duplication"){
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}", event_num, evenement);
                    tree.arena[parent].set_event(Event::Duplication);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                    info!("[xml2tree] Attributes of {:?} are {:?}", evenement, evenement.attributes());
                    assert!(evenement.has_attribute("speciesLocation"));
                    assert_eq!(evenement.attributes().nth(0).unwrap().name(), "speciesLocation");
                    let location = evenement.attributes().nth(0).unwrap().value();
                    info!("[xml2tree] set location = {}",location);
                    tree.arena[parent].location = location.to_string();
                }
                if evenement.has_tag_name("branchingOut"){
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}", event_num, evenement);
                    tree.arena[parent].set_event(Event::BranchingOut);
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                    info!("[xml2tree] Attributes of {:?} are {:?}", evenement, evenement.attributes());
                    assert!(evenement.has_attribute("speciesLocation"));
                    assert_eq!(evenement.attributes().nth(0).unwrap().name(), "speciesLocation");
                    let location = evenement.attributes().nth(0).unwrap().value();
                    info!("[xml2tree] set location = {}",location);
                    tree.arena[parent].location = location.to_string();
                }
                // TODO
                // a verifier
                if evenement.has_tag_name("transferBack"){
                    // Ici on plusieurs evenements
                    // Par exemple
                    // <eventsRec>
                    // <transferBack destinationSpecies="5"></transferBack>
                    // <branchingOut speciesLocation="5"></branchingOut>
                    // </eventsRec>
                    // ou
                    // <eventsRec>
                    // <transferBack destinationSpecies="10"></transferBack>
                    // <speciation speciesLocation="10"></speciation>
                    // </eventsRec>
                    // Le destinationSpecies est donc l'emplacement ou doit etre
                    // le noeud représentant l'arivee du transfert
                    // le point de depart du transfer etant le pere de ce noeud
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}", event_num, evenement);
                    tree.arena[parent].set_event(Event::TransferBack);
                    // a priori cet event  ne sera pas conserve
                    info!("[xml2tree] setting event of {:?} : {:?}",
                        tree.arena[parent].name, tree.arena[parent].e);
                    info!("[xml2tree] Attributes of {:?} are {:?}", evenement, evenement.attributes());
                    assert!(evenement.has_attribute("destinationSpecies"));
                    assert_eq!(evenement.attributes().nth(0).unwrap().name(), "destinationSpecies");
                    let location = evenement.attributes().nth(0).unwrap().value();
                    info!("[xml2tree] set destinationSpecies = {}",location);
                    tree.arena[parent].location = location.to_string();
                    tree.arena[parent].is_a_transfert = true;
                }
                // TODO
                if evenement.has_tag_name("bifurcationOut"){
                    event_num += 1;
                    info!("[xml2tree] event Nb {} = {:?}", event_num, evenement);
                    tree.arena[parent].set_event(Event::BifurcationOut);
                    info!("[xml2tree] Attributes of {:?} are {:?}", evenement, evenement.attributes());
                    let grandparent =  tree.arena[parent].parent;
                    match grandparent {
                        Some(p) => {
                            let location =  &tree.arena[p].location;
                            info!("[xml2tree] set location according to its father = {}",location);
                            tree.arena[parent].location = location.to_string();
                        },
                        None => panic!("BifurcationOut node as no parent : {:?}",tree.arena[parent]),
                    };
                    tree.arena[parent].is_a_transfert = true;
                    //  A verifier
                    // Meme espece que son pere
                    // assert!(evenement.has_attribute("destinationSpecies"));
                    // assert_eq!(evenement.attributes()[0].name(),"destinationSpecies");
                    // let location = evenement.attributes()[0].value();
                    // tree.arena[parent].location = location.to_string();
                }
            }
            info!("[xml2tree]Event closed");
        }
    }
}
/// Processing potential obsolete tags from the old recPhyloXML format.
pub fn check_for_obsolete(gene_tree: &mut ArenaTree<String>, species_tree: &mut ArenaTree<String>) {
    info!("[check_for_obsolete] Initial gene tree {:?}",&gene_tree);
    let mut osls = Vec::new();
    for index in &mut gene_tree.arena {
        if index.e == Event::ObsoleteSpeciationLoss {
            info!("[check_for_obsolete] Find ObsoleteSpeciationLoss (OSL): {:?}",index);
            osls.push(index.idx);
        }
    }
    info!("[check_for_obsolete] Find {} OSL in the tree",osls.len());
    if osls.len() > 0 {
        println!("Warning! There was {} obsolete SpeciationLoss tag in the recPhyloXML",osls.len());
    }
    for osl in osls {
        info!("[check_for_obsolete] Processing: {:?}",osl);
        info!("[check_for_obsolete] OSL = {} at species {:?}",
            gene_tree.arena[osl].name, gene_tree.arena[osl].location);
        let children = &gene_tree.arena[osl].children;
        info!("[check_for_obsolete] Number of children: {:?}",children.len());
        assert_eq!(children.len(),2);
        let left = children[0];
        let right = children[1];
        info!("[check_for_obsolete] Left child = {} {:?}",
            gene_tree.arena[left].name, gene_tree.arena[left].e);
        info!("[check_for_obsolete] Right child = {} {:?}",
            gene_tree.arena[right].name, gene_tree.arena[right].e);
        // Le noeud loss dont on veut connaitre l'espece associee
        let loss = match gene_tree.arena[left].e
            {
            Event::Loss => left,
            _ => right,
            };
        // L'espece du noeud qui n'est pas loss
        let species_not_loss = match gene_tree.arena[left].e
            {
            Event::Loss => &gene_tree.arena[right].location,
            _ => &gene_tree.arena[left].location,
            };
        info!("[check_for_obsolete] Loss node is {:?}",gene_tree.arena[loss]);
        info!("[check_for_obsolete] Species of the other child is {:?}",species_not_loss);
        // Espece de l'OSL
        let species = &gene_tree.arena[osl].location;
        //  Index de l'espece dans l'arbre d'espece
        let species_node = match species_tree.get_index(species.to_string())
            {
            Ok(index) => index,
            Err(_err) => panic!("[check_for_obsolete] Unable to find node {:?}",species.to_string()),
            };
        let species_node_left = &species_tree.arena[species_node].children[0];
        let species_node_right = &species_tree.arena[species_node].children[1];
        let species_left = &species_tree.arena[*species_node_left].name;
        let species_right = &species_tree.arena[*species_node_right].name;
        info!("[check_for_obsolete] Species under the OSL in species tree = {}, {}",
            species_left, species_right);
        let loss_species = match species_not_loss == species_left {
            true => species_right,
            false => species_left,
        };
        info!("[check_for_obsolete] Thus species of loss node is {}",loss_species);
        gene_tree.arena[loss].location = loss_species.to_string();
    }
    info!("[check_for_obsolete] Final gene tree {:?}",&gene_tree);
}
#[allow(dead_code)]
/// Set the coordinates of the gene tree according to the associated species tree coordinates.
pub fn map_gene_trees(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    ) {
    let  nb_gntree =  gene_trees.len(); // Nombre d'arbres de gene
    info!("[map_gene_trees] {} gene trees to be processed",nb_gntree);
    let mut idx_rcgen = 0;  // Boucle sur les arbres de genes
    loop {
        info!("[map_gene_trees] => Processing Gene Tree {}",idx_rcgen);
        for  index in &mut gene_trees[idx_rcgen].arena {
            let mut mapped = false;
            for spindex in  &mut sp_tree.arena {
                if  index.location == spindex.name {
                    mapped = true;
                    let x = spindex.x;
                    index.x = x;
                    let y = spindex.y;
                    index.y = y;
                    info!("[map_gene_trees] [{}] Gene node {:?} mapped to  species node {:?}",
                        idx_rcgen, index,spindex);
                }
            }
            if !mapped {
                panic!("Unable to map Node {:?}",index);
            }
        }
        // Passe à l'arbre de gènes suivant
        idx_rcgen += 1;
        if idx_rcgen == nb_gntree {
            break;
        }
    } //Fin de la boucle sur les arbres de gènes
}
/// Determine and set the number of gene nodes associated to a species node.
pub fn map_species_trees(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    ) {
    let  nb_gntree =  gene_trees.len(); // Nombre d'arbres de gene
    info!("[map_species_trees] {} gene trees to be processed",nb_gntree);
    if nb_gntree > 0 {
        let mut idx_rcgen = 0;  // Boucle sur les arbres de genes
        loop {
            info!("[map_species_trees] => Processing Gene Tree {}",idx_rcgen);
            // Boucle sur les noeuds de l'arbre de gene idx_rcgen
            for  index in &mut gene_trees[idx_rcgen].arena {
                let mut mapped = false;
                // Boucle sur les noeuds de l'arbre d'espèce
                for spindex in  &mut sp_tree.arena {
                    if  index.location == spindex.name {
                        mapped = true;
                        // Incremente le nb de noeuds de gene associé au noeud d'espece
                        let mut nbg = spindex.nbg;
                        nbg = nbg + 1 ;
                        spindex.nbg = nbg;
                        // Ajoute le tuple (index de l'arbre de  gene, index du noeud de gene) associé
                        spindex.nodes.push((idx_rcgen, index.idx));
                        // spindex.nodes.insert(0,(idx_rcgen,index.idx));
                        info!("[map_species_trees] Gene node {:?} mapped to  species node {:?}", index, spindex);
                    }
                }
                if !mapped {
                    eprintln!("\nERROR: Unable to map Node {:?}",index);
                    eprintln!("\nThe species '{}' was not found in species tree",index.location);
                    eprintln!("\nMaybe you should use the 'free_living' option.");
                    process::exit(1)
                }
            }
            // Passe à l'arbre de gènes suivant
            idx_rcgen += 1;
            if idx_rcgen == nb_gntree {
                break;
            }
        } //Fin de la boucle sur les arbres de gènes
    } // fin de la condition sur ke nb de gènes
}
/// Shift the gene nodes in a given species node to avoid superposition.
pub fn bilan_mappings(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    index: usize,
    options: &Options,
    ) {
    info!("[bilan_mappings] Species Node {}",sp_tree.arena[index].name);
    let ratio = options.ratio ;   // permet de regler l'ecartement entre les noeuds de genes dans
                                  // l'arbre d'espece
    // shift_left_x is a shift for x for a left node
    // shift_right_x is a shift for x for a right node
    // shift_y is a shift for y for a any node
    let  mut shift_left_x = 0.0;
    let  mut shift_y = 0.0;
    let  mut shift_right_x = sp_tree.arena[index].nbg as f32 -1.0 ;
    let incr = 1.0;
    // TODO classer selon le Y du pere pour eviter les croisement
    // boucle sur l'espece
    for (index_node, node) in &sp_tree.arena[index].nodes {
        info!("[bilan_mappings] >>> {:?} {:?}",
            gene_trees[*index_node].arena[*node].name, gene_trees[*index_node].arena[*node].e);
        let bool_left = sp_tree.is_left(index);
        match  gene_trees[*index_node].arena[*node].e {
            Event::Duplication => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                // Do not shift on x  duplicated nodes
                // shift = shift + incr;
                shift_y = shift_y + incr;
                // Do not shift on x  duplicated nodes
                // shift_x = shift_x - incr;
            },
            Event::Speciation => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            Event::TransferBack => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            Event::BranchingOut => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            Event::Leaf => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            Event::Loss => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            Event::BifurcationOut => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            Event::ObsoleteSpeciationLoss => {
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
            _=> { //Any other event
                let x = gene_trees[*index_node].arena[*node].x;
                let x = match bool_left {
                    true   => x + PIPEBLOCK * shift_left_x / ratio,
                    false  => x + PIPEBLOCK * shift_right_x / ratio,
                };
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                let y = gene_trees[*index_node].arena[*node].y;
                let y = y + PIPEBLOCK * shift_y / ratio;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                shift_left_x = shift_left_x + incr;
                shift_y = shift_y + incr;
                shift_right_x = shift_right_x - incr;
            },
        }
    }
    let children = &mut  sp_tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
         bilan_mappings(sp_tree, gene_trees, son_left, options);
         bilan_mappings(sp_tree, gene_trees, son_right, options);
    }
}
/// Shift again previously shifted gene nodes in a species node in case of a duplication node or a leaf.
pub fn move_dupli_mappings(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    index: usize,
    options: &Options,
    ) {
    for (index_node, node) in &sp_tree.arena[index].nodes {
        info!("[move_dupli_mappings] >>> {:?} {:?}",
            gene_trees[*index_node].arena[*node].name, gene_trees[*index_node].arena[*node].e);
        match  gene_trees[*index_node].arena[*node].e {
            Event::Duplication => {
                let bool_left = sp_tree.is_left(index);
                // on aligne sur le fils de gauch ou droite selon si on est dans une branche g ou d
                let dupli_children =  &mut gene_trees[*index_node].arena[*node].children;
                let dupli_son = match bool_left {
                    true => dupli_children[0],
                    false => dupli_children[1],
                };
                let x = gene_trees[*index_node].arena[dupli_son].x;
                gene_trees[*index_node].arena[*node].set_x_noref(x);
                //  On decale le noeuyd pour qu'il soit au milieu de la branche
                // let species_parent =  sp_tree.arena[index].parent;
                if options.mid_dist {
                    let species_parent =  gene_trees[*index_node].arena[*node].parent;
                    // let midistance = match species_parent {
                    //     None => 0.0,
                    //     Some(p) => (sp_tree.arena[index].y - sp_tree.arena[p].y) / 1.7,
                    // };
                    let midistance = match species_parent {
                        None =>  sp_tree.arena[index].height / 2.0,
                        Some(p) => (gene_trees[*index_node].arena[*node].y - gene_trees[*index_node].arena[p].y) / 1.5,
                    };
                    let y = gene_trees[*index_node].arena[*node].y - midistance ;
                    gene_trees[*index_node].arena[*node].set_y_noref(y);
                    gene_trees[*index_node].arena[*node].set_ymod_noref(0.0);
                }
            },
            // Event::BranchingOut => {
            //     if options.mid_dist  {
            //         let species_parent =  gene_trees[*index_node].arena[*node].parent;
            //         let midistance = match species_parent {
            //             None =>  0.0,
            //             Some(p) => (gene_trees[*index_node].arena[*node].y - gene_trees[*index_node].arena[p].y) / 1.5,
            //         };
            //         let y = gene_trees[*index_node].arena[*node].y - midistance ;
            //         gene_trees[*index_node].arena[*node].set_y_noref(y);
            //         gene_trees[*index_node].arena[*node].set_ymod_noref(0.0);
            //     }
            // }
            // Il faut deplacer aussi les feuilles pour compenser: on les mets au meme niveau
            Event::Leaf => {
                let y = sp_tree.arena[index].y + sp_tree.arena[index].height / 2.0 ;
                gene_trees[*index_node].arena[*node].set_y_noref(y);
                gene_trees[*index_node].arena[*node].set_ymod_noref(0.0);
            }
            _=> {},
        }
    }
    let children =  &mut sp_tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        move_dupli_mappings(sp_tree, gene_trees, son_left, options);
        move_dupli_mappings(sp_tree, gene_trees, son_right, options);
    }
}
/// Move species father when the father and children of a gene speciation
/// are in the same node tree (Only occurs for 3-level gene/symbiot/host reconciliation).
pub fn move_species_mappings(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    index: usize,
    ) {
    for (index_node, node) in &sp_tree.arena[index].nodes {
        info!("[move_species_mappings] >>> {:?} {:?}",
            gene_trees[*index_node].arena[*node].name,gene_trees[*index_node].arena[*node].e);
        match  gene_trees[*index_node].arena[*node].e {
            Event::Speciation => {
                // on a une speciation
                let species_children =  &mut  gene_trees[*index_node].arena[*node].children;
                let mut left = species_children[0];
                let mut right = species_children[1];
                // verifie si les enfant sont dans le meme noeud
                if (sp_tree.arena[index].nodes.contains(&(*index_node,left))) &&
                   (sp_tree.arena[index].nodes.contains(&(*index_node,right))) {
                    let mut left_x = gene_trees[*index_node].arena[left].x;
                    let mut right_x = gene_trees[*index_node].arena[right].x;
                    if left_x > right_x {
                        let buf = left;
                        left = right;
                        right = buf;
                        left_x = gene_trees[*index_node].arena[left].x;
                        right_x = gene_trees[*index_node].arena[right].x;
                    };
                    let parent_x = gene_trees[*index_node].arena[*node].x;
                    if left_x > parent_x {
                    	gene_trees[*index_node].arena[*node].set_x_noref((left_x + right_x) / 2.0 );
                	}
                    if parent_x > right_x {
                        gene_trees[*index_node].arena[*node].set_x_noref((left_x + right_x) / 2.0 );
                    }
                }
            },
            _=> {},
        }
    }
    let children =  &mut  sp_tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        move_species_mappings( sp_tree, gene_trees, son_left);
        move_species_mappings( sp_tree, gene_trees, son_right);
    }
}
/// Specific processing of free living gene trees.
pub fn process_fl(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    index: usize,
    options: &Options,
    ) {
    //  Recupere les feuilles des arbres de gene
    let mut  genes = vec![];
    let mut  feuilles = vec![];
    for (index_node, node) in &sp_tree.arena[index].nodes {
        info!("[process_fl] >>> {:?} {:?}",
            gene_trees[*index_node].arena[*node].name, gene_trees[*index_node].arena[*node].e);
        if gene_trees[*index_node].arena[*node].e == Event::Leaf {
            if !genes.contains(index_node) {
                genes.push(*index_node);
                feuilles.push((index_node, node));
            }
        };
    }
    //  recherche l'ancetre des genes dans FREE_LIVING
    let mut max_x_in_lf = 0.0;
    for (index_node, node) in feuilles {
        let mut _parent = *node;
        let shift = genes.iter().position(|x| x  == index_node);
        let shift = match shift {
            Some(val) => val  as f32  ,
            None => panic!("Unexpected error in process_fl"),
        };
        let mut parent = gene_trees[*index_node].arena[*node].parent.expect("[process_fl] ERROR Unexpected root (1)");
        while gene_trees[*index_node].arena[*node].location == gene_trees[*index_node].arena[parent].location
            {
            _parent = parent;
            parent = match gene_trees[*index_node].arena[parent].parent {
                Some(p) => p,
                None =>    {
                    break
                },
            };
        }
        info!("[process_fl] Ancestor of the gene {} in this species node is {:?}",
            index_node, gene_trees[*index_node].arena[_parent]);
        // Cree l'arbre de gene qui servira a afficher le free living
        let mut fl_tree: ArenaTree<String> = ArenaTree::default();
        let mut parent_xmod = sp_tree.arena[index].x-sp_tree.arena[index].width + shift * PIPEBLOCK ;
        if options.free_living_shift {
            parent_xmod = parent_xmod + max_x_in_lf ;
        }
        // let mut parent_xmod = sp_tree.arena[index].x-sp_tree.arena[index].width + shift * PIPEBLOCK ;
        let mut parent_ymod = sp_tree.arena[index].y / 2.0 + shift * PIPEBLOCK;
        // Copie une de l'arbre de   genes dans le free living
        copie_fl(&mut fl_tree, &mut gene_trees[*index_node], _parent);
        // Traitement habituel d'un arbre
        knuth_layout(&mut fl_tree,0, &mut 1);
        check_contour_postorder(&mut fl_tree, 0);
        shift_mod_xy(&mut fl_tree, 0, &mut parent_xmod, &mut parent_ymod);
        set_middle_postorder(&mut fl_tree, 0);
        max_x_in_lf = max_x_in_lf + fl_tree.get_largest_x() - parent_xmod;
        let mut compteur = 0 ;
        while compteur < fl_tree.arena.len() {
            remplace_fl_inv(&mut fl_tree, &mut gene_trees[*index_node], compteur);
            compteur = compteur + 1;
        }
    }
}
/// Copy a node of the free-living part of a gene tree into a another tree under some conditions.
pub fn copie_fl(fl_tree: &mut ArenaTree<String>, gn_tree: &mut ArenaTree<String>, index: usize) {
    // Keep onmy gene associated to FREE_LIVING and skip tranferts
    if gn_tree.arena[index].location == "FREE_LIVING" && gn_tree.arena[index].e != Event::BranchingOut {
        let fl_root_val = gn_tree.arena[index].val.clone();
        let fl_root_name = gn_tree.arena[index].name.clone();
        let new_index = fl_tree.node(fl_root_val.to_string());
        fl_tree.arena[new_index].name = fl_root_name;
        let children = &gn_tree.arena[index].children;
        if children.len() > 0 {
            let left = children[0];
            let right = children[1];
            let fl_left_val = gn_tree.arena[left].val.clone();
            let fl_left_name = gn_tree.arena[left].name.clone();
            let new_left_index = fl_tree.new_node(fl_left_val.to_string());
            fl_tree.arena[new_left_index].name = fl_left_name;
            fl_tree.arena[new_left_index].parent = Some(new_index);
            let fl_right_val = gn_tree.arena[right].val.clone();
            let fl_right_name = gn_tree.arena[right].name.clone();
            let new_right_index = fl_tree.new_node(fl_right_val.to_string());
            fl_tree.arena[new_right_index].name = fl_right_name;
            fl_tree.arena[new_right_index].parent = Some(new_index);
            fl_tree.arena[new_index].children.push(new_left_index);
            fl_tree.arena[new_index].children.push(new_right_index);
            copie_fl(fl_tree, gn_tree, left);
            copie_fl(fl_tree, gn_tree, right);
        }
    }
    // Handling transfert
    if gn_tree.arena[index].location == "FREE_LIVING" && gn_tree.arena[index].e == Event::BranchingOut {
        // on veut traiter le fils de Branchinout qui reste dans free living, pas celui part (cad le transfert)
        let children = &gn_tree.arena[index].children;
        if children.len() > 0 {
            let left = children[0];
            let right = children[1];
            // Le neoud a conserver
            let fl_child  = match gn_tree.arena[right].location == "FREE_LIVING" {
                true => right,
                false => left,
            };
            // le noeud a ne pas conserver
            let tr_child  = match gn_tree.arena[right].location == "FREE_LIVING" {
                true => left,
                false => right,
            };
            let fl_root_val = gn_tree.arena[index].val.clone();
            let fl_root_name = gn_tree.arena[index].name.clone();
            let new_index = fl_tree.node(fl_root_val.to_string());
            fl_tree.arena[new_index].name = fl_root_name;
            // let fl_left_val = gn_tree.arena[left].val.clone();
            let fl_left_val = gn_tree.arena[tr_child].val.clone();
            let fl_left_name = gn_tree.arena[tr_child].name.clone();
            let new_left_index = fl_tree.new_node(fl_left_val.to_string());
            fl_tree.arena[new_left_index].name = fl_left_name;
            fl_tree.arena[new_left_index].parent = Some(new_index);
            // Ce noeuf est conserve pour gader la binarite, mais on ne l'utilsera pas
            // Tag this node as virtual, this will be useful later
            fl_tree.arena[new_left_index].virtualsvg = true;
            // let fl_right_val = gn_tree.arena[right].val.clone();
            let fl_right_val = gn_tree.arena[fl_child].val.clone();
            let fl_right_name = gn_tree.arena[fl_child].name.clone();
            let new_right_index = fl_tree.new_node(fl_right_val.to_string());
            fl_tree.arena[new_right_index].name = fl_right_name;
            fl_tree.arena[new_right_index].parent = Some(new_index);
            fl_tree.arena[new_index].children.push(new_left_index);
            fl_tree.arena[new_index].children.push(new_right_index);
            // On ne relance que se le noeud qui est dans free livong
            copie_fl(fl_tree, gn_tree, fl_child);
        }
    }
}
/// Replace the free-living part of a gene tree by a free living tree calculated independantly.
pub fn remplace_fl_inv(
    fl_tree: &mut ArenaTree<String>,
    gn_tree: &mut ArenaTree<String>,
    index: usize,
    ) {
    if ! fl_tree.arena[index].virtualsvg {
        let fl_val = fl_tree.arena[index].val.clone();
        let gn_index = gn_tree.get_node(fl_val.to_string());
        gn_tree.arena[gn_index].set_x_noref(fl_tree.arena[index].x);
        gn_tree.arena[gn_index].set_xmod_noref(fl_tree.arena[index].xmod);
        gn_tree.arena[gn_index].set_y_noref(fl_tree.arena[index].y);
        gn_tree.arena[gn_index].set_ymod_noref(fl_tree.arena[index].ymod);
    }
}
/// Center the gene nodes into a  species node.
pub fn center_gene_nodes(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    index: usize,
    ) {
    let left_sp = sp_tree.arena[index].x - sp_tree.arena[index].width / 2.0  ;
    let right_sp = sp_tree.arena[index].x + sp_tree.arena[index].width / 2.0  ;
    let up_sp = sp_tree.arena[index].y + sp_tree.arena[index].ymod
        - sp_tree.arena[index].height / 2.0  ;
    let down_sp = sp_tree.arena[index].y + sp_tree.arena[index].ymod
        + sp_tree.arena[index].height / 2.0  ;
    let mut left_gene = -100000000.0;
    let mut right_gene = 100000000.0;
    let mut down_gene = -100000000.0;
    let mut up_gene = 100000000.0;
    for (index_node, node) in &sp_tree.arena[index].nodes {
        info!("[center_gene_nodes] >>> {:?} {:?}",
            gene_trees[*index_node].arena[*node].name, gene_trees[*index_node].arena[*node].e);
        if  gene_trees[*index_node].arena[*node].x > left_gene {
            left_gene = gene_trees[*index_node].arena[*node].x;
        }
        if gene_trees[*index_node].arena[*node].x < right_gene {
            right_gene = gene_trees[*index_node].arena[*node].x;
        }
        if  gene_trees[*index_node].arena[*node].ymod > 0.0 {
            panic!("Unexpected ymod value");
        }
        if gene_trees[*index_node].arena[*node].y > down_gene {
            down_gene = gene_trees[*index_node].arena[*node].y;
        }
        if  gene_trees[*index_node].arena[*node].y < up_gene {
            up_gene = gene_trees[*index_node].arena[*node].y;
        }
    }
    let middle_sp = (left_sp + right_sp) / 2.0;
    let middle_gn = (left_gene + right_gene) / 2.0;
    let shift = middle_gn - middle_sp;
    let y_middle_sp = (up_sp + down_sp) / 2.0;
    let y_middle_gn = (up_gene + down_gene) / 2.0;
    let y_shift = y_middle_gn - y_middle_sp;
    for (index_node, node) in &sp_tree.arena[index].nodes {
        let x = gene_trees[*index_node].arena[*node].x;
        let x = x - shift ;
        gene_trees[*index_node].arena[*node].set_x_noref(x);
        let y = gene_trees[*index_node].arena[*node].y;
        let y = y - y_shift ;
        gene_trees[*index_node].arena[*node].set_y_noref(y);
    }
    let children = &mut sp_tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        center_gene_nodes(sp_tree, gene_trees, son_left);
        center_gene_nodes(sp_tree, gene_trees, son_right);
    }
}
/// Set the node widths of the species tree pipe.
pub fn set_species_width(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    ) {
    for spindex in &mut sp_tree.arena {
        let nbg = spindex.nbg;
        let nodes = &spindex.nodes;
        let mut nb_duplication_node = 0;
        for (index_node, node) in nodes {
            if gene_trees[*index_node].arena[*node].e == Event::Duplication {
                nb_duplication_node = nb_duplication_node + 1;
            }
        }
        // nb_duplication_node = 0;
        if nbg > 0 {
            spindex.width = ( nbg - nb_duplication_node ) as f32 * PIPEBLOCK;
            spindex.height = ( nbg - 0 ) as f32 * PIPEBLOCK;
        }
        else {
            spindex.width = PIPEBLOCK;
            spindex.height = PIPEBLOCK;
        }
    }
}
/// Give to the y val of gene leaves the same value in order to align species leaves
pub fn uniformise_gene_leaves_y_values(
    sp_tree: &mut ArenaTree<String>,
    gene_trees: &mut std::vec::Vec<ArenaTree<String>>,
    ) {
    let mut leave_y_max = 0.0;
    for spindex in & sp_tree.arena {
        // if the species node is a leaf
        if spindex.children.len() == 0 {
            for (index_node, node) in &sp_tree.arena[spindex.idx].nodes {
                if gene_trees[*index_node].arena[*node].location != "FREE_LIVING".to_string() &&
                gene_trees[*index_node].arena[*node].y > leave_y_max {
                     leave_y_max = gene_trees[*index_node].arena[*node].y;
                }
            }
        }
    }
    for spindex in & sp_tree.arena {
        // if the species node is a leaf
        if spindex.children.len() == 0 {
            for (index_node, node) in &sp_tree.arena[spindex.idx].nodes {
                // Change y for gene leaves only
                if gene_trees[*index_node].arena[*node].location != "FREE_LIVING".to_string() &&  gene_trees[*index_node].arena[*node].e == Event::Leaf {
                    gene_trees[*index_node].arena[*node].set_y_noref(leave_y_max);
                }
            }
        }
    }
}
/// Get the list of ids of all the "spTree" tag in a xml document.
pub fn find_sptrees(doc: &mut roxmltree::Document) -> Result <Vec<roxmltree::NodeId>, usize> {
    let descendants = doc.root().descendants();
    let mut gene_nodes:std::vec::Vec<roxmltree::NodeId> = Vec::new();
    // Search for the first occurnce of clade spTree
    for  node in descendants {
        if node.has_tag_name("spTree"){
            gene_nodes.push(node.id());
        }
    }
    info!("[find_sptrees] Number of species trees in xml = {}",gene_nodes.len());
    match gene_nodes.len() > 0 {
        true => return Ok(gene_nodes),
        false => Err(0),
    }
}
/// Get the list of ids of all the "regGeneTree" tag in a xml document.
pub fn find_rgtrees(doc: &mut roxmltree::Document) -> Result <Vec<roxmltree::NodeId>, usize> {
    let descendants = doc.root().descendants();
    let mut gene_nodes:std::vec::Vec<roxmltree::NodeId> = Vec::new();
    // Search for the first occurnce of clade spTree
    for  node in descendants {
        if node.has_tag_name("recGeneTree"){
            gene_nodes.push(node.id());
        }
    }
    info!("[find_rgtrees] Number of gene trees in xml = {}",gene_nodes.len());
    match gene_nodes.len() > 0 {
        true => return Ok(gene_nodes),
        false => Err(0),
    }
}
/// Initial set x and y of nodes in a tree: left son x is 0;  right son x is 1; y is depth.
pub fn knuth_layout(tree: &mut ArenaTree<String>, index: usize, depth: &mut usize) {
    tree.arena[index].set_y_noref(BLOCK* (*depth as f32));
    let children  = &mut tree.arena[index].children;
    if children.len() > 2 {
        panic!("The tree must be binary.")
    }
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        tree.arena[son_left].set_x_noref(0.0);
        tree.arena[son_right].set_x_noref(BLOCK);
        knuth_layout(tree, son_left, &mut(*depth+1));
        knuth_layout(tree, son_right, &mut(*depth+1));
    }
}
/// Transforms the tree into cladogram.
pub fn cladogramme(tree: &mut ArenaTree<String>) {
    let root = tree.get_root();
    let mut max_depth = get_maxdepth(tree, root, &mut 0);
    set_leaves_to_bottom(tree, root, &mut max_depth);
}
///  Use real branch lengths to build the tree.
pub fn real_length(tree: &mut ArenaTree<String>, index: usize, dist: &mut f32, options: &Options) {
    let dist_father = tree.arena[index].l;
    let mut dist = *dist + dist_father;
    tree.arena[index].set_y_noref(dist * BLOCK * options.scale + BLOCK);
    let children  = &mut  tree.arena[index].children;
    if children.len() > 1 {
        let son_left = children[0];
        let son_right = children[1];
        real_length( tree, son_left, &mut dist, options);
        real_length( tree, son_right, &mut dist, options);
    }
}
/// Get the depth of a tree.
pub fn get_maxdepth(tree: &mut ArenaTree<String>, index: usize, max :&mut usize) -> usize {
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        if tree.depth(son_left) > *max {
            *max = tree.depth(son_left);
        }
        if tree.depth(son_right) > *max {
            *max = tree.depth(son_right);
        }
        get_maxdepth(tree,son_left,max);
        get_maxdepth(tree,son_right,max);
    }
    *max
}
/// Set the y values of the leaves of a tree to the same value in a cladogram.
pub fn set_leaves_to_bottom(tree: &mut ArenaTree<String>, index: usize, max:&mut usize) {
    let children = &mut tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        set_leaves_to_bottom(tree, son_left, max);
        set_leaves_to_bottom(tree, son_right, max);
    }
    else {
        match tree.arena[index].e {
            Event::Loss => tree.arena[index].set_y_noref(BLOCK* (*max as f32 + 0.5 )),
            _ => tree.arena[index].set_y_noref(BLOCK* (*max as f32 + 1.0)),
        };
    }
}
/// Set the y values of the leaves of a tree to the same value in a real length branch tree.
pub fn set_leaves_y_values(tree: &mut ArenaTree<String>, index: usize, y: f32) {
    let children  = &mut tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        set_leaves_y_values(tree, son_left, y);
        set_leaves_y_values(tree, son_right, y);
    }
    else {
        match tree.arena[index].e {
            Event::Loss => {},
            _ => tree.arena[index].set_y_noref(y),
        };
    }
}
/// Shift the y values of the nodes of a tree.
pub fn shift_nodes_y_values(tree: &mut ArenaTree<String>, index: usize, y:  f32) {
    let val = tree.arena[index].y + y ;
    tree.arena[index].set_y_noref(val);
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let son_left = children[0];
        let son_right = children[1];
        shift_nodes_y_values(tree, son_left, y);
        shift_nodes_y_values(tree, son_right, y);
    }
}
/// Shift the  x y values  of a node and its children according to the cumulated xmod ymod values.
pub fn shift_mod_xy(tree: &mut ArenaTree<String>, index: usize, xmod: &mut f32, ymod: &mut f32) {
    info!("[shift_mod_xy] shifting {:?} xmod={} ymod={}", tree.arena[index], xmod, ymod);
    let x_father = tree.arena[index].x;
    let xmod_father = tree.arena[index].xmod;
    let mut xmod = *xmod + xmod_father;
    tree.arena[index].set_x_noref(x_father+xmod);
    let y_father = tree.arena[index].y;
    let ymod_father = tree.arena[index].ymod;
    let mut ymod = *ymod + ymod_father;
    tree.arena[index].set_y_noref(y_father+ymod);
    let children  = &mut  tree.arena[index].children;
    if children.len() > 2 {
        panic!("The tree must be binary")
    }
    if children.len() > 1 {
        let son_left = children[0];
        let son_right = children[1];
        shift_mod_xy(tree, son_left, &mut xmod, &mut ymod);
        shift_mod_xy(tree, son_right, &mut xmod, &mut ymod);
    }
}
/// Scaling tree height.
pub fn scale_heigth(tree: &mut ArenaTree<String>, scale: f32) {
    for spindex in  &mut tree.arena {
        let y = spindex.y;
        spindex.y = y * scale;
    };
}
/// Scaling tree width.
pub fn scale_width(tree: &mut ArenaTree<String>, scale: f32) {
    for spindex in  &mut tree.arena {
        let x = spindex.x;
        spindex.x = x * scale;
    };
}
/// Uniformise the size of the pipe tree nodes (by uniformising nbg).
pub fn species_uniformisation(tree: &mut ArenaTree<String>) {
    let mut max = 0;
    for spindex in  &mut tree.arena {
        if spindex.nbg > max {max = spindex.nbg};
    };
    for spindex in  &mut tree.arena {
        spindex.nbg = max;
    };
}
#[allow(dead_code)]
// Traverse the tree using post-order traversal starting from a given node
pub fn  explore_postorder(tree: &mut ArenaTree<String>, index: usize) {
    let children  = &mut tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        let right = children[1];
        explore_postorder(tree, left);
        explore_postorder(tree, right);
        println!("POST-ORDER TRAVERSAL : INTERNAL NODE  {:?} / DEPTH = {}",
            tree.arena[index], tree.depth(index));
    }
    else{
        println!("POST-ORDER TRAVERSAL : LEAF           {:?} / DEPTH = {}",
            tree.arena[index], tree.depth(index));
    }
}
/// Solve the conflicts between a parent and its children in a tree  (species pipe tree only).
pub fn  check_vertical_contour_postorder(tree: &mut ArenaTree<String>, index: usize, ymod: f32) {
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        let right = children[1];
        info!("[check_vertical_contour_postorder] Father = {} (ymod = {} ) , Left = {}, Right = {}",
            tree.arena[index].name, tree.arena[index].ymod, tree.arena[left].name,
            tree.arena[right].name);
        push_down(tree, index, left, right);
        check_vertical_contour_postorder(tree, left, tree.arena[left].ymod + 0.0 *  ymod);
        check_vertical_contour_postorder(tree, right, tree.arena[right].ymod + 0.0 * ymod);
    }
}
/// Check for conficts between parents and children and shift down nodes in order to solve
/// detected conflicts (species pipe tree only).
pub fn push_down (tree: &mut ArenaTree<String>, parent: usize, left: usize, right: usize) {
    let node_parent_down_pos = node_ypos(tree, parent, 1);
    let node_left_up_pos = node_ypos(tree, left, -1);
    let node_right_up_pos = node_ypos(tree, right, -1);
    if (node_left_up_pos <=  node_parent_down_pos) ||
       (node_right_up_pos <=  node_parent_down_pos) {
        let shift_left = node_parent_down_pos - node_left_up_pos ;
        let shift_right = node_parent_down_pos - node_right_up_pos ;
        let mut shift_down = match shift_left > shift_right {
            true => shift_left,
            false => shift_right,
        };
        if shift_down <= PIPEBLOCK {
            shift_down = PIPEBLOCK;
        }
        // TODO configurable
        let shift_down = shift_down + 4.0 * PIPEBLOCK;
        info!("[push_down] CONFLIT AT SPEC NODE {}: parent y = {} ymod = {} down = {} left up = {} right up = {} => shift = {}",
            tree.arena[parent].name, tree.arena[parent].y, tree.arena[parent].ymod,
            node_parent_down_pos, node_left_up_pos, node_right_up_pos, shift_down);
        info!("[push_down] SHIFTING Y {} + 1xPIPEBLOCK = {}", shift_down, shift_down + 1.0 * PIPEBLOCK);
        info!("Initial left : y = {}, ymod = {}", tree.arena[left].y, tree.arena[left].ymod);
        let y = tree.arena[left].y;
        let y = y + shift_down ;
        tree.arena[left].set_y_noref(y);
        let y = tree.arena[right].y;
        let y = y +shift_down ;
        tree.arena[right].set_y_noref(y);
    }
}
/// Solve the conflicts between the left subtree and the right subtree.
pub fn  check_contour_postorder(tree: &mut ArenaTree<String>, index: usize) {
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        let right = children[1];
        check_contour_postorder(tree, left);
        check_contour_postorder(tree, right);
        push_right(tree, left, right);
    }
    else{
    }
}


/// Solve the conflicts between the left subtree and the right subtree.
pub fn  check_contour_postorder_tidy_tree(
    tree: &mut ArenaTree<String>,
    index: usize,
    options: &Options,
    config: &Config,
    ) {
    info!("[check_contour_postorder_tidy_tree]");
    info!("[check_contour_postorder_tidy_tree] node {}",tree.arena[index].name);
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        let right = children[1];
        check_contour_postorder_tidy_tree(tree, right, options, config);
        check_contour_postorder_tidy_tree(tree, left, options, config);
        push_right_tidy_tree(tree, left, right, options, config);
        set_middle_postorder(tree, 0);
    }
}

/// Get the leftest  or rightest x value of a node.
pub fn node_xpos(tree: &mut ArenaTree<String>, index: usize, xmod: f32, operator : i32) -> f32 {
    tree.arena[index].x + tree.arena[index].xmod
    + operator as f32 * tree.arena[index].nbg as f32 /2.0  *PIPEBLOCK + xmod
}
/// Get the upper or lower y value of a node
pub fn node_ypos(tree: &mut ArenaTree<String>, index: usize, operator: i32) -> f32 {
    tree.arena[index].y + tree.arena[index].ymod
    + operator as f32 * tree.arena[index].nbg as f32 /2.0  *PIPEBLOCK
}
/// Get the left 'contour' of a sub tree.
pub fn  get_contour_left(
    tree: &mut ArenaTree<String>,
    index:usize,
    depth:usize,
    contour_left: &mut Vec<f32>,
    parent_xmod: f32,
    )  {
    info!("[get_contour_left] >>> {:?}",tree.arena[index]);
    let local_depth = tree.depth(index) - depth; // Profondeur du noeud pa rapport a noeud de depart
    let node_left_pos = node_xpos(tree, index, parent_xmod, -1);
    if contour_left.len() <= local_depth {
        if tree.arena[index].xmod < 0.0 {
            panic!("Error: negative xmod.");
        }
        contour_left.push(node_left_pos);
        info!("[get_contour_left] increment contour is now {:?}",contour_left);
    }
    if tree.arena[index].xmod < 0.0 {
        panic!("Error: negative  xmod.");
    }
    if node_left_pos <= contour_left[local_depth] {
        contour_left[local_depth] = node_left_pos;
        info!("[get_contour_left]: contour is now {:?}",contour_left);
    }
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        get_contour_left(tree, left, depth, contour_left, tree.arena[index].xmod + parent_xmod );
    }
}
/// Get the right 'contour' of a sub tree.
pub fn  get_contour_right(
    tree: &mut ArenaTree<String>,
    index: usize,
    depth: usize,
    contour_right: &mut Vec<f32>,
    parent_xmod: f32,
    )  {
    info!("[get_contour_right] process node {:?}",tree.arena[index]);
    let local_depth = tree.depth(index) - depth; // Profondeur du noeud pa rapport a noeud de depart
    let node_right_pos = node_xpos(tree, index, parent_xmod, 1);
    if contour_right.len() <= local_depth {
        if tree.arena[index].xmod < 0.0 {
            panic!("Error: negative xmod");
        }
        contour_right.push(node_right_pos);
            info!("[get_contour_right] increment contour is now {:?}",contour_right);
    }
    if tree.arena[index].xmod < 0.0 {
        panic!("Error: negative xmod");
    }
    if node_right_pos >= contour_right[local_depth] {
        contour_right[local_depth] = node_right_pos ;
            info!("[get_contour_right] contour is now {:?}",contour_right);
    }
    let children  = &mut tree.arena[index].children;
    if children.len() > 0 {
        let right = children[1];
        get_contour_right(tree, right, depth, contour_right, tree.arena[index].xmod + parent_xmod);
    }
}
/// Get the right 'contour' of a sub tree in the "tidy" context.
pub fn  get_contour_tidy_right(
    tree: &mut ArenaTree<String>,
    index: usize,
    depth: usize,
    contour_right: &mut Vec<(f32,f32,String)>,
    ymax: &mut f32,
    options: &Options,
    config: &Config,
    )  {
    // let children  = &mut  tree.arena[index].children;
    let x = tree.arena[index].x + tree.arena[index].nbg as f32 *PIPEBLOCK /2.0;
    let mut y = tree.arena[index].y + tree.arena[index].nbg as f32 *PIPEBLOCK /2.0;
    // avoid superposition of leaves
    if tree.is_leaf(index) {
        y = y + match options.tidy_leaves_check {
            false => 5.0,
            // TO DO : cas des arbre d'espèces. Il faiut prendre la longueur du plus long nom de
            // gène associé à la feuille espèce.
            true => {
                    match tree.arena[index].nbg > 0 {
                        true => {
                        // let mut longest_gene_name = 0;
                        // for gene in &tree.arena[index].nodes {
                        // //  J'ai besoin des arbres de gènes....
                        // }
                        5.0
                        },
                        false => tree.arena[index].name.len() as f32 * config.gene_police_size.parse::<f32>().unwrap(),
                    }
            },
        };
    }
    let name  = &tree.arena[index].name;
    if y >= *ymax {
        contour_right.push((x, y, name.to_string()));
        *ymax=y;
    }
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let right = children[1];
        let left = children[0];
        get_contour_tidy_right(tree, right, depth, contour_right, ymax, options, config);
        get_contour_tidy_right(tree, left, depth, contour_right, ymax, options, config);
    }
}
/// Get the left 'contour' of a sub tree in the "tidy" context.
pub fn  get_contour_tidy_left(
    tree: &mut ArenaTree<String>,
    index: usize,
    depth: usize,
    contour_left: &mut Vec<(f32, f32, String)>,
    ymax: &mut f32,
    options: &Options,
    config: &Config,
    )  {
    let x = tree.arena[index].x  - tree.arena[index].nbg as f32 *PIPEBLOCK /2.0 ;
    let mut y = tree.arena[index].y + tree.arena[index].nbg as f32 *PIPEBLOCK /2.0;
    // avoid superposition of leaves
    if tree.is_leaf(index) {
        y = y + match options.tidy_leaves_check {
            false => 5.0,
            true => tree.arena[index].name.len() as f32 *config.gene_police_size.parse::<f32>().unwrap(),
        };
    }
    let name =  &tree.arena[index].name;
    if y >= *ymax{
        *ymax = y;
        contour_left.push((x, y, name.to_string()));
    }
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        let right = children[1];
        get_contour_tidy_left(tree, left, depth, contour_left, ymax, options, config);
        get_contour_tidy_left(tree, right, depth, contour_left, ymax, options, config);
    }
}
/// Check for conficts between subtrees and shift conflicting right-hand subtrees to the right
/// in order to solve detected conflicts.
pub fn  push_right(tree: &mut ArenaTree<String>, left_tree: usize, right_tree: usize) -> f32 {
    info!("[push_right] compare right contour of {} and left contour of {}", left_tree, right_tree);
    let mut right_co_of_left_tr  = vec![tree.arena[left_tree].x
        + tree.arena[left_tree].xmod + tree.arena[left_tree].nbg as f32 *PIPEBLOCK];
    let depth_left_tr  = tree.depth(left_tree);
    get_contour_right(tree, left_tree, depth_left_tr, &mut right_co_of_left_tr, 0.0);
    info!("[push_right] right contour of {} = {:?}", left_tree, right_co_of_left_tr);
    let mut left_co_of_right_tr  = vec![tree.arena[right_tree].x
        + tree.arena[right_tree].xmod - tree.arena[right_tree].nbg as f32 *PIPEBLOCK];
    let depth_right_tr  = tree.depth(right_tree);
    get_contour_left(tree, right_tree, depth_right_tr, &mut left_co_of_right_tr, 0.0);
    info!("[push_right] left contour of {} = {:?}", right_tree, left_co_of_right_tr);
    // Si on   a pas le meme longeur de contour on complete le plus petit
    // en remplissant ce qui manque avec la derniere valeur, pour eviter
    // qu'un sous arbre vosin se place sous une feuille
    let right_len = right_co_of_left_tr.len();
    let left_len = left_co_of_right_tr.len();
    if left_len > right_len {
        let last_val =  right_co_of_left_tr[right_len-1];
        let last_vals =  vec![last_val;left_len-right_len];
        right_co_of_left_tr.extend(last_vals.iter().copied());
        info!("[push_right] complete right contour with last value {}",last_val);
    }
    if left_len < right_len {
        let last_val =  left_co_of_right_tr[left_len-1];
        let last_vals =  vec![last_val;right_len - left_len];
        left_co_of_right_tr.extend(last_vals.iter().copied());
        info!("[push_right] complete left contour with last value {}",last_val);
    }
    info!("[push_right] comparing  right cont. of left tree: {:?}",right_co_of_left_tr);
    info!("[push_right] with left cont. of right tree:       {:?} ",left_co_of_right_tr);
    let iter = left_co_of_right_tr.iter().zip(right_co_of_left_tr).map(|(x, y )| (x-y));
    let shift = iter.min_by(|x, y| (*x as i64) .cmp(&(*y as i64 )));
    info!("[push_right] distance max  = {:?}",shift);
    match shift {
        Some(val) => {
            info!("[push_right] distance max  = {:?}",shift);
            if val <= 0.0 {// bidouilel
                info!("[push_right] ================CONFLIT==========");
                info!("[push_right] Modify node {:?}",tree.arena[right_tree]);
                let x_mod =  tree.arena[right_tree].xmod;
                info!("[push_right] initial x_mod = {}",x_mod);
                let x_mod =  x_mod -1.0 *val + BLOCK ;//bidouille
                info!("[push_right] new x_mod = {}",x_mod);
                tree.arena[right_tree].set_xmod_noref(x_mod);
                info!("[push_right] updated node {:?}",tree.arena[right_tree]);
                info!("[push_right] ================CONFLIT==========");
            }
        },
        None => {}
    }
    0.0
}
/// Get the minimal distance between 2 contours in "tidy" context.
pub fn  dmin_tidy(
    cont_left: Vec<(f32,f32,String)>,
    cont_right: Vec<(f32,f32,String)>,
    dmin: &mut f32,
    index_left: &mut usize,
    index_right: &mut usize,
    )  {
    let max_left = cont_left.len();
    let max_right = cont_right.len();
    info!("[dmin_tidy] dmin {}",dmin);
    info!("[dmin_tidy] left  contour {}{:?}", index_left, cont_left);
    info!("[dmin_tidy] right contour {}{:?}", index_right, cont_right);
    info!("[dmin_tidy] Compare x value of  right {} and  left  {}",
        cont_left[*index_left].2, cont_right[*index_right].2,);
    let d = cont_right[*index_right].0 - cont_left[*index_left].0;
    if d < *dmin {
        *dmin = d;
        info!("[dmin_tidy] new dmin = {} ",dmin);
    }
    info!("[dmin_tidy] Compare y value of  right {} {} and  left  {} {}",
        cont_left[*index_left].2, cont_left[*index_left].1, cont_right[*index_right].2,
        cont_right[*index_right].1);
    if cont_right[*index_right].1 <= cont_left[*index_left].1 {
        info!("[dmin_tidy] increment right");
        *index_right = *index_right + 1;
        if *index_right < max_right {
            dmin_tidy(cont_left, cont_right, dmin, index_left, index_right);
        }
    }
    else  {
        info!("[dmin_tidy] increment left");
        *index_left = *index_left + 1;
        if *index_left < max_left {
            dmin_tidy(cont_left, cont_right, dmin, index_left, index_right);
        }
    }
}
/// Check for conficts between subtrees and shift conflicting right-hand subtrees to the right
/// in order to solve detected conflicts in the "tidy" context.
pub fn  push_right_tidy_tree(
    tree: &mut ArenaTree<String>,
    left_tree:usize,
    right_tree:usize,
    options: &Options,
    config: &Config
    ) {
    info!("[push_right_tidy_tree]");
    info!("[push_right_tidy_tree] Compare right contour of {} {} and left contour of {} {}",
        tree.arena[left_tree].val, tree.arena[left_tree].name, tree.arena[right_tree].val,
        tree.arena[right_tree].name);
    let mut  right_co_of_left_tr:std::vec::Vec<(f32,f32,String)> = Vec::new();
    let depth_left_tr = tree.depth(left_tree);
    get_contour_tidy_right(
        tree,
        left_tree,
        depth_left_tr,
        &mut right_co_of_left_tr,
        &mut 0.0,
        options,
        config,
    );
    info!("[push_right_tidy_tree] Contour right = {:?}",right_co_of_left_tr);
    let mut  left_co_of_right_tr:std::vec::Vec<(f32,f32,String)> = Vec::new();
    let depth_right_tr  = tree.depth(right_tree);
    get_contour_tidy_left(
        tree,
        right_tree,
        depth_right_tr,
        &mut left_co_of_right_tr,
        &mut 0.0,
        options,
        config
    );
    info!("[push_right_tidy_tree] Contour left = {:?}",left_co_of_right_tr);
    let mut dmin = 1000000.0;
    dmin_tidy(right_co_of_left_tr, left_co_of_right_tr, &mut dmin, &mut 0, &mut 0);
    info!("[push_right_tidy_tree] DMIN = {:?} [max = {}]", dmin, PIPEBLOCK);
    if dmin > BLOCK * 0.50 {
        info!("[push_right_tidy_tree] SHIFTING SUBTREE  {:?} {:?}",
            tree.arena[left_tree].val, tree.arena[left_tree].name);
        tree.shift_x_subtree(left_tree, dmin - BLOCK * 0.50  );
        set_middle_postorder(tree, 0);
    }
    else {
        info!("[push_right_tidy_tree] NOT SHIFTING ");
    }
}
/// Set the x of the father between its children.
pub fn set_middle_postorder(tree: &mut ArenaTree<String>, index: usize) {
    let children  = &mut  tree.arena[index].children;
    if children.len() > 0 {
        let left = children[0];
        let right = children[1];
        set_middle_postorder(tree, left);
        set_middle_postorder(tree, right);
        info!("[set_middle_postorder] node {:?}",index);
        let x_left = tree.arena[left].x;
        let x_right = tree.arena[right].x;
        let x = tree.arena[index].x;
        let x_middle = ( x_right + x_left ) / 2.0 ;
        info!("[set_middle_postorder] x father set from {} to {}", x, x_middle);
        tree.arena[index].set_x_noref(x_middle);
        let x_mod =  tree.arena[right].xmod;
        let x_mod =  x_mod + x_middle - x;
        tree.arena[index].set_xmod_noref(x_mod);
    }
}
/// Send the index of the last common ancestor of 2 nodes.
#[allow(dead_code)]
pub fn lca(tree: &mut ArenaTree<String>, index1: usize, index2: usize) -> usize {
    let p1 = tree.arena[index1].parent;
    let p2 = tree.arena[index2].parent;
    let p1 = match p1 {
        Some(p) => p,
        None => return index1,
    };
    let p2 = match p2 {
        Some(p) => p,
        None =>  return index2,
    };
    if p1 == index2 {
        return index2
    }
    if p2 == index1 {
        return index1
    }
    let d1 = tree.depth(index1);
    let d2 = tree.depth(index2);
    info!("[lca] Distance {}: {}", index1, d1);
    info!("[lca] Distance {}: {}", index2, d2);
    if d1 == d2 {
        // lca(tree,p1,p2);
        info!("[lca] Comparison of {:?} and {:?}", tree.arena[index1], tree.arena[index2]);
        match p1 == p2  {
            true => {
                info!("[lca] LCA is {}",p1);
                 return p1
            },
            false => lca(tree, p1, p2),
        }
    }
    else if d1 > d2 {
        lca(tree, p1, index2)
    }
    else {
         lca(tree, index1, p2)
    }
}
#[allow(dead_code)]
pub fn summary_root(tree: &mut ArenaTree<String>, index: usize)  {
    let children  = &tree.arena[index].children;
    match children.len() > 0  {
        true => {
            let left = children[0];
            let right = children[1];
            println!("Node {} ({}) has 2 children: {} ({}) and {} ({})",
            index, &tree.arena[index].name,
            left, &tree.arena[left].name,
            right, &tree.arena[right].name);
            summary_root(tree, left);
            summary_root(tree, right);
        },
        false => {
            println!("Node {} ({}) has no children ", index, &tree.arena[index].name)
        },
    }
}
#[allow(dead_code)]
/// Reset all positions x y xmod ymod of a tree.
pub fn reset_pos(tree: &mut ArenaTree<String>)  {
    for index in &mut tree.arena {
        index.x = 0.0;
        index.y = 0.0;
        index.xmod = 0.0;
        index.ymod = 0.0;
    };
}
#[allow(dead_code)]
/// Display a short summary of each node of a tree.
pub fn summary(tree: &mut ArenaTree<String>)  {
    for index in &tree.arena {
        let children  = &index.children;
        let parent = match index.parent {
            Some(p) =>  &tree.arena[p].name,
            None => "None",
        };
        match children.len() > 0  {
            true => {
                print!("Node {} ({}) has {} children:", index.idx, index.name, children.len());
                for child in children {
                print!(" {} ({})", child, &tree.arena[*child].name);
            };
            print!(" and its parent is {}",parent);
            },
        false => {
            print!("Node {} ({}) has no children and its parent is {}", index.idx, index.name,parent)
            },
        }
        println!(" [{:?}]",index.e);
    }
}
#[allow(dead_code)]
/// Add a node to another node in a tree.
pub fn add_child(tree: &mut ArenaTree<String>, parent: usize, child: usize)  {
    info!("[add_child] adding {} to {}",child,parent);
    tree.arena[child].parent = Some(parent);
    tree.arena[parent].children.push(child);
    info!("[add_child] parent node : {:?}",tree.arena[parent]);
}
#[allow(dead_code)]
/// Move a node from a parent node to another node in a tree.
pub fn move_child(tree: &mut ArenaTree<String>, child: usize, new_parent: usize)  {
    let parent =  match tree.arena[child].parent {
        Some(p) => p,
        None => panic!("Node {:?} has no parent.",child),
    };
    info!("[move_child] moving {} from {} to {}", child, parent, new_parent);
    tree.arena[child].parent = Some(new_parent);
    tree.arena[new_parent].children.push(child);
    tree.arena[parent].children.retain(|&x| x !=  child);
    info!("[move_child] parent node : {:?}",tree.arena[parent]);
    info!("[move_child] new parent node : {:?}",tree.arena[new_parent]);
}