Crate lifelink

source ·
Expand description

Erase covariant lifetime parameters from anything, with generic associated types.

[dependencies]
lifelink = { version = "0.1.1" }

Like cryo, lifelink allows you to use the resulting types in dynamic environments where lifetime is unpredictable, like runtimes of garbage-collected scripting languages, or where Any is required. Unlike cryo, the interface is not restricted to primitive references: it works on everything with covariant lifetime parameters though GATs.

The generic_associated_types feature has been stabilized in Rust 1.65. If a pinned nightly compiler before the stabilization release is required, the nightly feature can be enabled which adds the appropriate feature attribute.

Examples

Simple case with just a reference:

use std::thread::spawn;
use std::sync::atomic::{AtomicUsize, Ordering};
use lifelink::{lifelink, Lifelink, RefCtor};

let answer = AtomicUsize::new(0);

lifelink!(lifelink: RefCtor<AtomicUsize> = &answer);

{
    let guard = lifelink.get().unwrap();
    assert_eq!(0, guard.load(Ordering::Relaxed));
    guard.store(42, Ordering::Release);
}

assert_eq!(42, answer.load(Ordering::Acquire));

A more involved example with multiple lifetime parameters, unrelated type parameters. and threads:

use std::thread::spawn;
use std::time::Duration;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::marker::PhantomData;
use lifelink::{lifelink, Lifelink, Ctor, Cov};

#[derive(Copy, Clone)]
struct Answers<'a, 'b, 'c, T> {
    first: &'a AtomicUsize,
    second: &'b AtomicUsize,
    third: &'c AtomicUsize,
    rest: T,
}

struct AnswersCtor<T> {
    _marker: PhantomData<T>,
}

impl<T: 'static> Ctor for AnswersCtor<T> {
    // The lifetimes can be unified here, due to covariance
    type Ty<'a> = Answers<'a, 'a, 'a, T>;
}

// An invocation of `lifelink::cov!` on the constructor type is required
// to prove covariance to the type system. This only compiles for types that
// can be proved by Rust to be covariant. See docs on the Cov trait for more
// details.
lifelink::cov!(<T: 'static> AnswersCtor<T>);

fn compute<'a, 'b, 'c>(answers: Answers<'a, 'b, 'c, ()>) {
    lifelink!(lifelink: AnswersCtor<()> = answers);
    let (send, recv) = channel();
    
    spawn(move || {
        let guard = lifelink.get().unwrap();
        guard.first.store(42, Ordering::Release);
        guard.second.store(42, Ordering::Release);
        guard.third.store(42, Ordering::Release);
        send.send(()).unwrap();
    });

    // Unlike `cryo`, `lifelink` does *not* attempt to wait until the `'static`
    // handle is dropped. As such, a way to wait for task completion external
    // to `lifelink` is required. See the Caveats section of README for more
    // details, and the rationale behind this decision.
    recv.recv_timeout(Duration::from_millis(20)).unwrap();

    assert_eq!(42, answers.first.load(Ordering::Acquire));
    assert_eq!(42, answers.second.load(Ordering::Acquire));
    assert_eq!(42, answers.third.load(Ordering::Acquire));
}

let first = AtomicUsize::new(0);
let second = AtomicUsize::new(0);
let third = AtomicUsize::new(0);

compute(Answers {
    first: &first,
    second: &second,
    third: &third,
    rest: (),
});

Caveats

Lifelink can only ever give out shared / immutable references. This is because Rust allows moves by default, making mutable references to types with lifetime parameters too hard to reason about, and almost impossible to use correctly unless reduced to uselessness. Instead, users have to use interior mutability in a way that maintains covariance (which, thankfully, Rust will help prove in a Cov impl).

Unlike cryo, lifelink does not attempt to wait until the 'static handle is dropped. It’s more than happy to drop or unwrap a Deathtouch, if there isn’t a Guard in scope somewhere that precise moment. This may come as surprising, but is a conscious decision to make lifelink work in tandem with environments where lifetime is unpredictable, e.g. a garbage collected scripting language, where it’s much better to get a error than a deadlock from a misbehaving script. As such, a way to wait for task completion external to lifelink is required.

Feature flags

  • nightly - Adds feature(generic_associated_types) to the top of the crate, which would allow the crate to compile on a nightly compiler earlier than 1.65 (when the feature was stabilized).

License

MIT OR Apache-2.0

Macros

  • Macro that implements Cov safely for a Ctor type.
  • Safe helper macro for creating a Lifelink value wrapping thing. The lifetime of this Lifelink value will be managed by the Rust compiler, and the thing passed in cannot be retrieved.

Structs

  • A guard value that preserves compile-time lifetime information from the value passed to Lifelink::new.
  • A guard value that provides temporary access to the wrapped value. Care must be taken to ensure that this value is dropped properly. Leaking the guard value may lead to a deadlock.
  • A 'static handle through which a value with a covariant lifetime parameter can temporarily be accessed.
  • Constructor of references to 'static values, that implements Ctor and Cov.

Traits

  • Trait for type constructors that produce types whose references are covariant over the lifetime parameter.
  • Trait for type constructors that take one single lifetime parameter. See also Cov for Deref on Guard.
  • Marker trait implemented for Ctors where the constructed types are Send.
  • Marker trait implemented for Ctors where the constructed types are Sync.