1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use secp256k1::message::Message;
use secp256k1::scalar::Scalar;
use secp256k1::keys::{ PublicKey };
use secp256k1::error::Error;
use secp256k1::recovery_id::RecoveryId;
use ecmult::ECMULT_CONTEXT;

#[derive(Debug, Clone, Eq, PartialEq)]
/// An ECDSA signature.
pub struct Signature {
    pub r: Scalar,
    pub s: Scalar,
}

impl Signature {
    pub fn parse(p: &[u8; 64]) -> Signature {
        let mut r = Scalar::default();
        let mut s = Scalar::default();

        r.set_b32(array_ref!(p, 0, 32));
        s.set_b32(array_ref!(p, 32, 32));

        Signature { r, s }
    }

    pub fn serialize(&self) -> [u8; 64] {
        let mut ret = [0u8; 64];
        self.r.fill_b32(array_mut_ref!(ret, 0, 32));
        self.s.fill_b32(array_mut_ref!(ret, 32, 32));
        ret
    }

    /// Check signature is a valid message signed by public key.
    pub fn verify(message: &Message, signature: &Signature, pubkey: &PublicKey) -> bool {
        ECMULT_CONTEXT.verify_raw(&signature.r, &signature.s, &pubkey.0, &message.0)
    }

    /// Recover public key from a signed message.
    pub fn recover(
        message: &Message,
        signature: &Signature,
        recovery_id: &RecoveryId,
    ) -> Result<PublicKey, Error> {
        ECMULT_CONTEXT
            .recover_raw(&signature.r, &signature.s, recovery_id.0, &message.0)
            .map(|v| PublicKey(v))
    }
}

#[cfg(test)]
mod tests {
    use secp256k1::rand::thread_rng;
    use super::ECMULT_CONTEXT;
    use {Message, PublicKey, RecoveryId, SecretKey, SharedSecret, Signature};
    use secp256k1_test::ecdh::SharedSecret as SecpSharedSecret;
    use secp256k1_test::key as SecpKey;
    use secp256k1_test::{
        Message as SecpMessage, RecoverableSignature as SecpRecoverableSignature,
        RecoveryId as SecpRecoveryId, Secp256k1, Signature as SecpSignature,
    };

    #[test]
    fn test_verify() {
        let secp256k1 = Secp256k1::new();

        let message_arr = [5u8; 32];
        let (privkey, pubkey) = secp256k1.generate_keypair(&mut thread_rng()).unwrap();
        let message = SecpMessage::from_slice(&message_arr).unwrap();
        let signature = secp256k1.sign(&message, &privkey).unwrap();

        let pubkey_arr = pubkey.serialize_vec(&secp256k1, false);
        assert!(pubkey_arr.len() == 65);
        let mut pubkey_a = [0u8; 65];
        for i in 0..65 {
            pubkey_a[i] = pubkey_arr[i];
        }

        let ctx_pubkey = PublicKey::parse(&pubkey_a).unwrap();
        let ctx_message = Message::parse(&message_arr);
        let signature_arr = signature.serialize_compact(&secp256k1);
        assert!(signature_arr.len() == 64);
        let mut signature_a = [0u8; 64];
        for i in 0..64 {
            signature_a[i] = signature_arr[i];
        }
        let ctx_sig = Signature::parse(&signature_a);

        secp256k1.verify(&message, &signature, &pubkey).unwrap();
        assert!(Signature::verify(&ctx_message, &ctx_sig, &ctx_pubkey));
        let mut f_ctx_sig = ctx_sig.clone();
        f_ctx_sig.r.set_int(0);
        if f_ctx_sig.r != ctx_sig.r {
            assert!(!ECMULT_CONTEXT.verify_raw(
                &f_ctx_sig.r,
                &ctx_sig.s,
                &ctx_pubkey.clone().into(),
                &ctx_message.0
            ));
        }
        f_ctx_sig.r.set_int(1);
        if f_ctx_sig.r != ctx_sig.r {
            assert!(!ECMULT_CONTEXT.verify_raw(
                &f_ctx_sig.r,
                &ctx_sig.s,
                &ctx_pubkey.clone().into(),
                &ctx_message.0
            ));
        }
    }

    #[test]
    fn test_recover() {
        let secp256k1 = Secp256k1::new();

        let message_arr = [5u8; 32];
        let (privkey, pubkey) = secp256k1.generate_keypair(&mut thread_rng()).unwrap();
        let message = SecpMessage::from_slice(&message_arr).unwrap();
        let signature = secp256k1.sign_recoverable(&message, &privkey).unwrap();

        let pubkey_arr = pubkey.serialize_vec(&secp256k1, false);
        assert!(pubkey_arr.len() == 65);
        let mut pubkey_a = [0u8; 65];
        for i in 0..65 {
            pubkey_a[i] = pubkey_arr[i];
        }

        let ctx_message = Message::parse(&message_arr);
        let (rec_id, signature_arr) = signature.serialize_compact(&secp256k1);
        assert!(signature_arr.len() == 64);
        let mut signature_a = [0u8; 64];
        for i in 0..64 {
            signature_a[i] = signature_arr[i];
        }
        let ctx_sig = Signature::parse(&signature_a);

        // secp256k1.recover(&message, &signature).unwrap();
        let ctx_pubkey = Signature::recover(
            &ctx_message,
            &ctx_sig,
            &RecoveryId::parse(rec_id.to_i32() as u8).unwrap(),
        ).unwrap();
        let sp = ctx_pubkey.serialize();

        let sps: &[u8] = &sp;
        let gps: &[u8] = &pubkey_a;
        assert_eq!(sps, gps);
    }

    #[test]
    fn test_convert_key1() {
        let secret: [u8; 32] = [
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x01,
        ];
        let expected: &[u8] = &[
            0x04, 0x79, 0xbe, 0x66, 0x7e, 0xf9, 0xdc, 0xbb, 0xac, 0x55, 0xa0, 0x62, 0x95, 0xce, 0x87,
            0x0b, 0x07, 0x02, 0x9b, 0xfc, 0xdb, 0x2d, 0xce, 0x28, 0xd9, 0x59, 0xf2, 0x81, 0x5b, 0x16,
            0xf8, 0x17, 0x98, 0x48, 0x3a, 0xda, 0x77, 0x26, 0xa3, 0xc4, 0x65, 0x5d, 0xa4, 0xfb, 0xfc,
            0x0e, 0x11, 0x08, 0xa8, 0xfd, 0x17, 0xb4, 0x48, 0xa6, 0x85, 0x54, 0x19, 0x9c, 0x47, 0xd0,
            0x8f, 0xfb, 0x10, 0xd4, 0xb8,
        ];
        let seckey = SecretKey::parse(&secret).unwrap();
        let pubkey = PublicKey::from_secret_key(&seckey);
        let public = pubkey.serialize();
        let pubkey_a: &[u8] = &public;

        assert_eq!(expected, pubkey_a);
    }

    #[test]
    fn test_convert_key2() {
        let secret: [u8; 32] = [
            0x4d, 0x5d, 0xb4, 0x10, 0x7d, 0x23, 0x7d, 0xf6, 0xa3, 0xd5, 0x8e, 0xe5, 0xf7, 0x0a, 0xe6,
            0x3d, 0x73, 0xd7, 0x65, 0x8d, 0x40, 0x26, 0xf2, 0xee, 0xfd, 0x2f, 0x20, 0x4c, 0x81, 0x68,
            0x2c, 0xb7,
        ];
        let expected: &[u8] = &[
            0x04, 0x3f, 0xa8, 0xc0, 0x8c, 0x65, 0xa8, 0x3f, 0x6b, 0x4e, 0xa3, 0xe0, 0x4e, 0x1c, 0xc7,
            0x0c, 0xbe, 0x3c, 0xd3, 0x91, 0x49, 0x9e, 0x3e, 0x05, 0xab, 0x7d, 0xed, 0xf2, 0x8a, 0xff,
            0x9a, 0xfc, 0x53, 0x82, 0x00, 0xff, 0x93, 0xe3, 0xf2, 0xb2, 0xcb, 0x50, 0x29, 0xf0, 0x3c,
            0x7e, 0xbe, 0xe8, 0x20, 0xd6, 0x3a, 0x4c, 0x5a, 0x95, 0x41, 0xc8, 0x3a, 0xce, 0xbe, 0x29,
            0x3f, 0x54, 0xca, 0xcf, 0x0e,
        ];
        let seckey = SecretKey::parse(&secret).unwrap();
        let pubkey = PublicKey::from_secret_key(&seckey);
        let public = pubkey.serialize();
        let pubkey_a: &[u8] = &public;

        assert_eq!(expected, pubkey_a);
    }

    #[test]
    fn test_convert_anykey() {
        let secp256k1 = Secp256k1::new();
        let (secp_privkey, secp_pubkey) = secp256k1.generate_keypair(&mut thread_rng()).unwrap();

        let mut secret = [0u8; 32];
        for i in 0..32 {
            secret[i] = secp_privkey[i];
        }

        let seckey = SecretKey::parse(&secret).unwrap();
        let pubkey = PublicKey::from_secret_key(&seckey);
        let public = pubkey.serialize();
        let public_compressed = pubkey.serialize_compressed();
        let pubkey_r: &[u8] = &public;
        let pubkey_compressed_r: &[u8] = &public_compressed;

        let secp_pubkey_arr = secp_pubkey.serialize_vec(&secp256k1, false);
        assert!(secp_pubkey_arr.len() == 65);
        let secp_pubkey_compressed_arr = secp_pubkey.serialize_vec(&secp256k1, true);
        assert!(secp_pubkey_compressed_arr.len() == 33);
        let mut secp_pubkey_a = [0u8; 65];
        for i in 0..65 {
            secp_pubkey_a[i] = secp_pubkey_arr[i];
        }
        let mut secp_pubkey_compressed_a = [0u8; 33];
        for i in 0..33 {
            secp_pubkey_compressed_a[i] = secp_pubkey_compressed_arr[i];
        }
        let secp_pubkey_r: &[u8] = &secp_pubkey_a;
        let secp_pubkey_compressed_r: &[u8] = &secp_pubkey_compressed_a;

        assert_eq!(secp_pubkey_r, pubkey_r);
        assert_eq!(secp_pubkey_compressed_r, pubkey_compressed_r);
    }

    #[test]
    fn test_sign_verify() {
        let secp256k1 = Secp256k1::new();

        let message_arr = [6u8; 32];
        let (secp_privkey, secp_pubkey) = secp256k1.generate_keypair(&mut thread_rng()).unwrap();

        let secp_message = SecpMessage::from_slice(&message_arr).unwrap();
        let pubkey_arr = secp_pubkey.serialize_vec(&secp256k1, false);
        assert!(pubkey_arr.len() == 65);
        let mut pubkey_a = [0u8; 65];
        for i in 0..65 {
            pubkey_a[i] = pubkey_arr[i];
        }
        let pubkey = PublicKey::parse(&pubkey_a).unwrap();
        let mut seckey_a = [0u8; 32];
        for i in 0..32 {
            seckey_a[i] = secp_privkey[i];
        }
        let seckey = SecretKey::parse(&seckey_a).unwrap();
        let message = Message::parse(&message_arr);

        let (sig, recid) = Message::sign(&message, &seckey).unwrap();

        // Self verify
        assert!(Signature::verify(&message, &sig, &pubkey));

        // Self recover
        let recovered_pubkey = Signature::recover(&message, &sig, &recid).unwrap();
        let rpa = recovered_pubkey.serialize();
        let opa = pubkey.serialize();
        let rpr: &[u8] = &rpa;
        let opr: &[u8] = &opa;
        assert_eq!(rpr, opr);

        let signature_a = sig.serialize();
        let secp_recid = SecpRecoveryId::from_i32(recid.into()).unwrap();
        let secp_rec_signature =
            SecpRecoverableSignature::from_compact(&secp256k1, &signature_a, secp_recid).unwrap();
        let secp_signature = SecpSignature::from_compact(&secp256k1, &signature_a).unwrap();

        // External verify
        secp256k1
            .verify(&secp_message, &secp_signature, &secp_pubkey)
            .unwrap();

        // External recover
        let recovered_pubkey = secp256k1
            .recover(&secp_message, &secp_rec_signature)
            .unwrap();
        let rpa = recovered_pubkey.serialize_vec(&secp256k1, false);
        let rpr: &[u8] = &rpa;
        assert_eq!(rpr, opr);
    }

    #[test]
    fn test_failing_sign_verify() {
        let seckey_a: [u8; 32] = [
            169, 195, 92, 103, 2, 159, 75, 46, 158, 79, 249, 49, 208, 28, 48, 210, 5, 47, 136, 77, 21,
            51, 224, 54, 213, 165, 90, 122, 233, 199, 0, 248,
        ];
        let seckey = SecretKey::parse(&seckey_a).unwrap();
        let pubkey = PublicKey::from_secret_key(&seckey);
        let message_arr = [6u8; 32];
        let message = Message::parse(&message_arr);

        let (sig, recid) = Message::sign(&message, &seckey).unwrap();
        let tmp: u8 = recid.into();
        assert_eq!(tmp, 1u8);

        let recovered_pubkey = Signature::recover(&message, &sig, &recid).unwrap();
        let rpa = recovered_pubkey.serialize();
        let opa = pubkey.serialize();
        let rpr: &[u8] = &rpa;
        let opr: &[u8] = &opa;
        assert_eq!(rpr, opr);
    }

    fn genkey(secp256k1: &Secp256k1) -> (SecpKey::PublicKey, SecpKey::SecretKey, PublicKey, SecretKey) {
        let (secp_privkey, secp_pubkey) = secp256k1.generate_keypair(&mut thread_rng()).unwrap();
        let pubkey_arr = secp_pubkey.serialize_vec(&secp256k1, false);
        assert!(pubkey_arr.len() == 65);
        let mut pubkey_a = [0u8; 65];
        for i in 0..65 {
            pubkey_a[i] = pubkey_arr[i];
        }
        let pubkey = PublicKey::parse(&pubkey_a).unwrap();
        let mut seckey_a = [0u8; 32];
        for i in 0..32 {
            seckey_a[i] = secp_privkey[i];
        }
        let seckey = SecretKey::parse(&seckey_a).unwrap();

        (secp_pubkey, secp_privkey, pubkey, seckey)
    }

    #[test]
    fn test_shared_secret() {
        let secp256k1 = Secp256k1::new();

        let (spub1, ssec1, pub1, sec1) = genkey(&secp256k1);
        let (spub2, ssec2, pub2, sec2) = genkey(&secp256k1);

        let shared1 = SharedSecret::new(&pub1, &sec2).unwrap();
        let shared2 = SharedSecret::new(&pub2, &sec1).unwrap();

        let secp_shared1 = SecpSharedSecret::new(&secp256k1, &spub1, &ssec2);
        let secp_shared2 = SecpSharedSecret::new(&secp256k1, &spub2, &ssec1);

        assert_eq!(shared1, shared2);

        for i in 0..32 {
            assert_eq!(shared1.as_ref()[i], secp_shared1[i]);
        }

        for i in 0..32 {
            assert_eq!(shared2.as_ref()[i], secp_shared2[i]);
        }
    }

}